Fano Factor in Strained Graphene Nanoribbon Nanodevices

  • Received Date: August 31, 2017
  • Published Date: October 31, 2017
  • We investigate the Fano factor in a strained armchair and zigzag graphene nanoribbon nanodevice under the effect of ac field in a wide range of frequencies at different temperatures (10 K–70 K). This nanodevice is modeled as follows: a graphene nanoribbon is connected to two metallic leads. These two metallic leads operate as a source and a drain. The conducting substance is the gate electrode in this three-terminal nanodevice. Another metallic gate is used to govern the electrostatics and the switching of the graphene nanoribbon channel. The substances at the graphene nanoribbon/metal contact are controlled by the back gate. The photon-assisted tunneling probability is deduced by solving the Dirac eigenvalue differential equation in which the Fano factor is expressed in terms of this tunneling probability. The results show that for the investigated nanodevice, the Fano factor decreases as the frequency of the induced ac field increases, while it increases as the temperature increases. In general, the Fano factors for both strained armchair and zigzag graphene nanoribbons are different. This is due to the effect of the uniaxial strain. It is shown that the band structure parameters of graphene nanoribbons at the energy gap, the C–C bond length, the hopping integral, the Fermi energy and the width are modulated by uniaxial strain. This research gives us a promise of the present nanodevice being used for digital nanoelectronics and sensors.
  • Article Text

  • [1]
    Novoselov K S, Geim A K, Morozov S Vet al. 2005 Nature 438 197 doi: 10.1038/nature04233

    CrossRef Google Scholar

    [2]
    Fiori G, Bonaccorso F, Iannaccone G et al. 2014 Nat. Nanotechnol. 9 768 doi: 10.1038/nnano.2014.207

    CrossRef Google Scholar

    [3]
    Castro Neto A H, Guinea F, Peres N M R et al. 2009 Rev. Mod. Phys. 81 109 doi: 10.1103/RevModPhys.81.109

    CrossRef Google Scholar

    [4]
    Stander N, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807 doi: 10.1103/PhysRevLett.102.026807

    CrossRef Google Scholar

    [5]
    Mina A N and Phillips A H 2013 J. App. Sci. Res. 9 1854

    Google Scholar

    [6]
    Mina A N, Awadallah A A, Phillips A H et al. 2012 J. Phys.: Conf. Ser. 343 012076 doi: 10.1088/1742-6596/343/1/012076

    CrossRef Google Scholar

    [7]
    Morozov S V, Novoselov K S, Katsnelson M I et al. 2008 Phys. Rev. Lett. 100 016602 doi: 10.1103/PhysRevLett.100.016602

    CrossRef Google Scholar

    [8]
    Lin Y M, Dimitrakopoulos C, Jenkins K A et al. 2010 Science 327 662 doi: 10.1126/science.1184289

    CrossRef Google Scholar

    [9]
    Schedin F, Geim A K, Morozov S V et al. 2007 Nat. Mater. 6 652 doi: 10.1038/nmat1967

    CrossRef Google Scholar

    [10]
    Novoselov K and Geim A K 2007 Mat. Tech. 22 178

    Google Scholar

    [11]
    Mina A N, Shehata W I and Phillips A H 2015 J. Lasers Opt. Photon. 2 1000125

    Google Scholar

    [12]
    Todd K, Chou H T, Amasha S et al. 2009 Nano Lett. 9 416 doi: 10.1021/nl803291b

    CrossRef Google Scholar

    [13]
    Stampfer C, Guttinger J, Hellmuller S et al. 2009 Phys. Rev. Lett. 102 056403 doi: 10.1103/PhysRevLett.102.056403

    CrossRef Google Scholar

    [14]
    Jiao L, Wang X, Diankov G et al. 2010 Nat. Nanotechnol. 5 321 doi: 10.1038/nnano.2010.54

    CrossRef Google Scholar

    [15]
    Wang X, Ouyang Y, Li X et al. 2008 Phys. Rev. Lett. 100 206803 doi: 10.1103/PhysRevLett.100.206803

    CrossRef Google Scholar

    [16]
    Guttinge J, Seif J, Stampfer C et al. 2011 Phys. Rev. B 83 165445 doi: 10.1103/PhysRevB.83.165445

    CrossRef Google Scholar

    [17]
    Ihn T, Guttinger J, Molitor F et al. 2010 Mater. Today 13 44 doi: 10.1016/S1369-70211070033-X

    CrossRef Google Scholar

    [18]
    Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803 doi: 10.1103/PhysRevLett.97.216803

    CrossRef Google Scholar

    [19]
    Son Y W, Cohen M L and Louie S G 2006 Nature 444 347 doi: 10.1038/nature05180

    CrossRef Google Scholar

    [20]
    Sun L, Li Q, Ren H et al. 2008 J. Chem. Phys. 129 074704 doi: 10.1063/1.2958285

    CrossRef Google Scholar

    [21]
    Hod O and Scuseria G E 2009 Nano Lett. 9 2619 doi: 10.1021/nl900913c

    CrossRef Google Scholar

    [22]
    Blanter Y M and Büttiker M 2000 Phys. Rep. 336 1 doi: 10.1016/S0370-15739900123-4

    CrossRef Google Scholar

    [23]
    Sarma S D, Adam S, Hwang E H et al. 2011 Rev. Mod. Phys. 83 407 doi: 10.1103/RevModPhys.83.407

    CrossRef Google Scholar

    [24]
    Danneau R, Wu F, Craciun M F et al. 2008 Phys. Rev. Lett. 100 196802 doi: 10.1103/PhysRevLett.100.196802

    CrossRef Google Scholar

    [25]
    DiCarlo L, Williams J R, Zhang Y et al. 2008 Phys. Rev. Lett. 100 156801 doi: 10.1103/PhysRevLett.100.156801

    CrossRef Google Scholar

    [26]
    Dragomirova R L, Areshkin D A and Nikolic B K 2009 Phys. Rev. B 79 241401 doi: 10.1103/PhysRevB.79.241401

    CrossRef Google Scholar

    [27]
    Yuan J H et al. 2011 Phys. Lett. A 375 2670 doi: 10.1016/j.physleta.2011.05.064

    CrossRef Google Scholar

    [28]
    San-Jose P, Prada E and Golubev D S 2007 Phys. Rev. B 76 195445 doi: 10.1103/PhysRevB.76.195445

    CrossRef Google Scholar

    [29]
    Mohamed W S, Asham M D and Phillips A H 2016 J. Multidisc. Eng. Sci. Tech. 3 4759

    Google Scholar

    [30]
    Mohamed W S, Asham M D and Phillips A H 2017 J. Multidisc. Eng. Sci. Tech. 4 6720

    Google Scholar

    [31]
    Li Y X and Xu L F 2011 Solid State Commun. 151 219 doi: 10.1016/j.ssc.2010.11.029

    CrossRef Google Scholar

    [32]
    Li G, Chen G and Peng P 2013 Phys. Lett. A 377 2895 doi: 10.1016/j.physleta.2013.08.038

    CrossRef Google Scholar

    [33]
    Abdelrazek A S, Zein W A and Phillips A H 2013 J. Comput. Theor. Nanosci. 10 1257 doi: 10.1166/jctn.2013.2838

    CrossRef Google Scholar

    [34]
    Brey L and Fertig H A 2006 Phys. Rev. B 73 235411 doi: 10.1103/PhysRevB.73.235411

    CrossRef Google Scholar

    [35]
    Oosterkamp T H, Kouwenhoven L P, Koolen A E A et al. 1996 Semicond. Sci. Technol. 11 1512 doi: 10.1088/0268-1242/11/11S/010

    CrossRef Google Scholar

    [36]
    Mei H, Yong Z and HongBo Z 2010 Chin. Phys. Lett. 27 037302 doi: 10.1088/0256-307X/27/3/037302

    CrossRef Google Scholar

    [37]
    Li Y, Jiang X, Liu Z et al. 2010 Nano Res. 3 545 doi: 10.1007/s12274-010-0015-7

    CrossRef Google Scholar

    [38]
    Wang J, Zhao R, Yang M et al. 2013 J. Chem. Phys. 138 084701 doi: 10.1063/1.4792142

    CrossRef Google Scholar

    [39]
    Liao W H, Zhou B H, Wang H Y et al. 2010 Eur. Phys. J. B 76 463 doi: 10.1140/epjb/e2010-00222-3

    CrossRef Google Scholar

    [40]
    Harrison W A 1989 New York: Dover Publications

    Google Scholar

    [41]
    Hasegawa Y, Konno R, Nakano H et al. 2006 Phys. Rev. B 74 033413 doi: 10.1103/PhysRevB.74.033413

    CrossRef Google Scholar

    [42]
    Lu Y and Guo J 2010 Nano Res. 3 189 doi: 10.1007/s12274-010-1022-4

    CrossRef Google Scholar

    [43]
    Chen Q and Zhao H K 2008 Eur. Phys. J. B 64 237 doi: 10.1140/epjb/e2008-00310-y

    CrossRef Google Scholar

    [44]
    Parmentier F D, Serkovic-Loli L N, Roulleau P et al. 2016 Phys. Rev. Lett. 116 227401 doi: 10.1103/PhysRevLett.116.227401

    CrossRef Google Scholar

    [45]
    Camalet S, Kohler S and Hanggi P 2004 Phys. Rev. B 70 155326 doi: 10.1103/PhysRevB.70.155326

    CrossRef Google Scholar

    [46]
    Camalet S, Lehmann J, Kohler S et al. 2003 Phys. Rev. Lett. 90 210602 doi: 10.1103/PhysRevLett.90.210602

    CrossRef Google Scholar

    [47]
    Zein W A, Ibrahim N A and Phillips A H 2011 Prog. Phys. 1 65

    Google Scholar

    [48]
    Tan Z B, Puska A, Nieminen T et al. 2013 Phys. Rev. B 88 245415 doi: 10.1103/PhysRevB.88.245415

    CrossRef Google Scholar

    [49]
    Korniyenko Y, Shevtsov O and Löfwander T 2017 Phys. Rev. B 95 165420 doi: 10.1103/PhysRevB.95.165420

    CrossRef Google Scholar

  • Related Articles

    [1]WANG Ji-Cheng, ZHOU Ke-Ya, WANG Yue-Yuan, LIAO Qing-Hong, LIU Shu-Tian. Withdrawal of Chinese Physics Letters 28 (2011) 043401 [J]. Chin. Phys. Lett., 2011, 28(10): 109901. doi: 10.1088/0256-307X/28/10/109901
    [2]XU Shi-Xiang. Withdrawal of Chinese Physics Letters 26 (2009) 114209 [J]. Chin. Phys. Lett., 2011, 28(6): 069901. doi: 10.1088/0256-307X/28/6/069901
    [3]JIANG Hui, SHEN Jia-Jie, ZHAO Yu-Min. Benford's Law in Nuclear Structure Physics [J]. Chin. Phys. Lett., 2011, 28(3): 032101. doi: 10.1088/0256-307X/28/3/032101
    [4]ZHANG Chun-Yi, LI Juan, MENG Xiang-Hua, XU Tao, GAO Yi-Tian. Existence of Formal Conservation Laws of a Variable-Coefficient Korteweg--de Vries Equation from Fluid Dynamics and Plasma Physics via Symbolic Computation [J]. Chin. Phys. Lett., 2008, 25(3): 878-880.
    [5]ZHU Jun-Yi, GENG Xian-Guo. Miura Transformation for the TD Hierarchy [J]. Chin. Phys. Lett., 2006, 23(1): 1-3.
    [6]WU Pu-Xun, YU Hong-Wei. Relic Gravitational Waves and Trans-Planckian Physics [J]. Chin. Phys. Lett., 2005, 22(9): 2161-2164.
    [7]LUAN Chang-Fu. Entropy of Baker’s Transformation [J]. Chin. Phys. Lett., 2003, 20(3): 392-394.
    [8]LIU Hong, HE Xian-Tu, LOU Sen-Yue. Quintic Nonlinearity Induced Solitary Waves in Plasma Physics [J]. Chin. Phys. Lett., 2002, 19(1): 87-90.
    [9]WU Yue-liang. Probing New Physics from CP Violation in Radiative B Decays [J]. Chin. Phys. Lett., 1999, 16(5): 339-341.
    [10]LI Yin-yuan(Y.Y.Li). THE ONE-DIMENSIONAL PHYSICS OF α-LiIO3 [J]. Chin. Phys. Lett., 1984, 1(2): 49-52.
  • Cited by

    Periodical cited type(14)

    1. Ma, X., Zhang, H., Zhao, Y. et al. Propagation Properties of Partially Coherent Flat-Topped Beam Rectangular Arrays in Plasma and Atmospheric Turbulence. Photonics, 2025, 12(1): 89. DOI:10.3390/photonics12010089
    2. Wang, C., Jin, P., Yang, F. et al. Click metamaterials: Fast acquisition of thermal conductivity and functionality diversities. Applied Materials Today, 2024. DOI:10.1016/j.apmt.2024.102431
    3. Liu, Z., Jin, P., Lei, M. et al. Topological thermal transport. Nature Reviews Physics, 2024, 6(9): 554-565. DOI:10.1038/s42254-024-00745-w
    4. Dong, X.-M., Guan, B.-J., Li, Y.-J. Quasi-three-dimensional hydrodynamics of the corona region of laser irradiation of a slab. Chinese Physics B, 2024, 33(8): 085203. DOI:10.1088/1674-1056/ad4532
    5. Liu, J., Xu, L., Huang, J. Spatiotemporal diffusion metamaterials: Theories and applications. Applied Physics Letters, 2024, 124(21): 210502. DOI:10.1063/5.0208656
    6. Zhuang, P., Zhou, X., Xu, L. et al. Cooperative near- and far-field thermal management via diffusive superimposed dipoles. Applied Physics Reviews, 2024, 11(1): 011416. DOI:10.1063/5.0190120
    7. Yang, F., Zhang, Z., Xu, L. et al. Controlling mass and energy diffusion with metamaterials. Reviews of Modern Physics, 2024, 96(1): 015002. DOI:10.1103/RevModPhys.96.015002
    8. Liu, Z., Huang, J. Topological Plasma Transport from a Diffusion View. Chinese Physics Letters, 2023, 40(11): 110305. DOI:10.1088/0256-307X/40/11/110305
    9. Zhang, C.-X., Li, T.-J., Xu, L.-J. et al. Dust-Induced Regulation of Thermal Radiation in Water Droplets. Chinese Physics Letters, 2023, 40(5): 054401. DOI:10.1088/0256-307X/40/5/054401
    10. Zhang, Z., Xu, L., Qu, T. et al. Diffusion metamaterials. Nature Reviews Physics, 2023, 5(4): 218-235. DOI:10.1038/s42254-023-00565-4
    11. Zhang, Z., Yang, F., Huang, J. Intelligent Chameleonlike Metashells for Mass Diffusion. Physical Review Applied, 2023, 19(2): 024009. DOI:10.1103/PhysRevApplied.19.024009
    12. Zhuang, P., Wang, J., Yang, S. et al. Nonlinear thermal responses in geometrically anisotropic metamaterials. Physical Review E, 2022, 106(7): 044203. DOI:10.1103/PhysRevE.106.044203
    13. Yang, F., Xu, L., Wang, J. et al. Transformation Theory for Spatiotemporal Metamaterials. Physical Review Applied, 2022, 18(3): 034080. DOI:10.1103/PhysRevApplied.18.034080
    14. Wang, B., Huang, J. Hydrodynamic metamaterials for flow manipulation: Functions and prospects. Chinese Physics B, 2022, 31(9): 098101. DOI:10.1088/1674-1056/ac7f8c

    Other cited types(0)

Catalog

    Article views (120) PDF downloads (430) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return