[1] | Bell L E 2008 Science 321 1457 | Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
[2] | Gaultois M W et al 2013 Chem. Mater. 25 2911 | Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations
[3] | Zhao L D et al 2014 Nature 508 373 | Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
[4] | Li J et al 2012 Energy Environ. Sci. 5 8543 | A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides
[5] | Gorai P et al 2016 J. Mater. Chem. A 4 11110 | Computational identification of promising thermoelectric materials among known quasi-2D binary compounds
[6] | Lee K et al 2016 Chem. Mater. 28 2776 | GeAs: Highly Anisotropic van der Waals Thermoelectric Material
[7] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[8] | Perdew J P et al 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[9] | Blöchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[10] | Scheidemantel T J et al 2003 Phys. Rev. B 68 125210 | Transport coefficients from first-principles calculations
[11] | Ong K P et al 2011 Phys. Rev. B 83 115110 | Analysis of the thermoelectric properties of -type ZnO
[12] | Zou D et al 2013 J. Mater. Chem. A 1 8888 | Electronic structures and thermoelectric properties of layered BiCuOCh oxychalcogenides (Ch = S, Se and Te): first-principles calculations
[13] | Ali R et al 2014 Chin. Phys. Lett. 31 047102 | Optoelectronic Properties, Elastic Moduli and Thermoelectricity of SrAlGa: An Ab Initio Study
[14] | Zou D et al 2016 J. Alloys Compd. 686 571 | Predicted thermoelectric properties of natural superlattice structural compounds BaCu Ch F ( Ch = S, Se and Te) by first-principles calculations
[15] | Guo H H et al 2014 Chin. Phys. B 23 017201 | Theoretical study of thermoelectric properties of MoS 2
[16] | Kaur K and Kumar R 2016 Chin. Phys. B 25 056401 | Effect of pressure on electronic and thermoelectric properties of magnesium silicide: A density functional theory study
[17] | Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67 | BoltzTraP. A code for calculating band-structure dependent quantities
[18] | Aulbur W G et al 2012 Solid State Phys. 54 1 | Coherent spin dynamics of electrons and excitons in nanostructures (a review)
[19] | Xi L et al 2012 Phys. Rev. B 86 155201 | Chemical bonding, conductive network, and thermoelectric performance of the ternary semiconductors Cu Sn ( Se, S) from first principles
[20] | Bilc D I et al 2015 Phys. Rev. Lett. 114 136601 | Low-Dimensional Transport and Large Thermoelectric Power Factors in Bulk Semiconductors by Band Engineering of Highly Directional Electronic States
[21] | Lee M S et al 2011 Phys. Rev. B 83 085204 | Electronic structure and thermoelectric properties of Sb-based semiconducting half-Heusler compounds
[22] | Singh D J and Mazin I 1997 Phys. Rev. B 56 R1650 | Calculated thermoelectric properties of La-filled skutterudites
[23] | Joshi R K et al 2005 Physica E 25 374 | Change of majority carrier type in PbS nanoparticle films
[24] | Watson G W 2001 J. Chem. Phys. 114 758 | The origin of the electron distribution in SnO
[25] | Ivanova L et al 1999 Inorg. Mater. 35 34 |
[26] | Gudelli V K et al 2016 J. Phys.: Condens. Matter 28 025502 | Predicted thermoelectric properties of olivine-type Fe 2 GeCh 4 (Ch = S, Se and Te)
[27] | Wang F Q et al 2015 Nanoscale 7 15962 | Thermoelectric properties of single-layered SnSe sheet
[28] | He J G et al 2016 Phys. Rev. Lett. 117 046602 | Ultralow Thermal Conductivity in Full Heusler Semiconductors
[29] | Gandi A N et al 2016 Chem. Mater. 28 1647 | Thermoelectric Performance of the MXenes M 2 CO 2 (M = Ti, Zr, or Hf)
[30] | Kumar S and Schwingenschlögl U 2016 Phys. Rev. B 94 035405 | Thermoelectric performance of functionalized MXenes