[1] | Chen J, Reed M A, Rawlett A M et al 1999 Science 286 1550 | Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device
[2] | Fan Z Q and Chen K Q 2010 Appl. Phys. Lett. 96 053509 | Negative differential resistance and rectifying behaviors in phenalenyl molecular device with different contact geometries
[3] | Zhang Z H, Guo C, Kwong D J et al 2013 Adv. Funct. Mater. 23 2765 | A Dramatic Odd-Even Oscillating Behavior for the Current Rectification and Negative Differential Resistance in Carbon-Chain-Modified Donor-Acceptor Molecular Devices
[4] | Saffarzadeh A and Farghadan A 2011 Appl. Phys. Lett. 98 023106 | A spin-filter device based on armchair graphene nanoribbons
[5] | Deng X Q, Zhang Z H, Tang G P et al 2014 Carbon 66 646 | Spin filter effects in zigzag-edge graphene nanoribbons with symmetric and asymmetric edge hydrogenations
[6] | Wu Q H, Zhao P and Liu D S 2016 Chin. Phys. Lett. 33 037303 | Spin Caloritronic Transport of 1,3,5-Triphenylverdazyl Radical
[7] | Liljeroth P, Repp J and Meyer G 2007 Science 317 1203 | Current-Induced Hydrogen Tautomerization and Conductance Switching of Naphthalocyanine Molecules
[8] | Fan Z Q, Zhang Z H, Deng X Q et al 2012 Org. Electron. 13 2954 | Reversible switching in an N-salicylideneaniline molecular device induced by hydrogen transfer
[9] | Xia C J, Zhang B Q, Yang M et al 2016 Chin. Phys. Lett. 33 047101 | Effect of Chirality on the Electronic Transport Properties of the Thioxanthene-Based Molecular Switch
[10] | Liu C L, Kurosawa T, Yu A D et al 2011 J. Phys. Chem. C 115 5930 | New Dibenzothiophene-Containing Donor−Acceptor Polyimides for High-Performance Memory Device Applications
[11] | Zhang Z H, Yang Z, Yuan J H et al 2008 J. Chem. Phys. 129 094702 | First-principles investigation on electronics characteristics of benzene derivatives with different side groups
[12] | Yin X, Liu H and Zhao J 2006 J. Chem. Phys. 125 094711 | Electronic transportation through asymmetrically substituted oligo(phenylene ethynylene)s: Studied by first principles nonequilibrium Green’s function formalism
[13] | Pan J B, Zhang Z H, Deng X Q et al 2010 Appl. Phys. Lett. 97 203104 | Rectifying performance of D-π-A molecules based on cyanovinyl aniline derivatives
[14] | Bala S, Aithal R K, Derosa P et al 2010 J. Phys. Chem. C 114 20877 | Molecular Rectifying Diodes Based on an Aluminum/4′-Hydroxy-4-biphenyl Carboxylic Acid/p + -Silicon Junction †
[15] | Qiu M and Liew K M 2013 J. Appl. Phys. 113 054305 | Length dependence of carbon-doped BN nanowires: A-D Rectification and a route to potential molecular devices
[16] | Zhang G P, Hu G C, Li Z L et al 2011 Chin. Phys. B 20 127304 | The effects of contact configurations on the rectification of dipyrimidinyl—diphenyl diblock molecular junctions
[17] | Song Y, Bao D L, Xie Z et al 2013 Phys. Lett. A 377 3228 | Obvious variation of rectification behaviors induced by isomeric anchoring groups for dipyrimidinyl–diphenyl molecular junctions
[18] | Areshkin D A, Gunlycke D and White C T 2007 Nano Lett. 7 204 | Ballistic Transport in Graphene Nanostrips in the Presence of Disorder: Importance of Edge Effects
[19] | Castro Neto A H, Guinea F, Peres N M R et al 2009 Rev. Mod. Phys. 81 109 | The electronic properties of graphene
[20] | Fujita M, Wakabayashi K, Nakada K et al 1996 J. Phys. Soc. Jpn. 65 1920 | Peculiar Localized State at Zigzag Graphite Edge
[21] | Son Y W, Cohen M L and Louie S G 2006 Nature 444 347 | Half-metallic graphene nanoribbons
[22] | Zeng J, Chen K Q, He J et al 2011 J. Phys. Chem. C 115 25072 | Edge Hydrogenation-Induced Spin-Filtering and Rectifying Behaviors in the Graphene Nanoribbon Heterojunctions
[23] | Li J C and Gong X 2013 Org. Electron. 14 2451 | Diode rectification and negative differential resistance of dipyrimidinyl–diphenyl molecular junctions
[24] | Song Y, Xie Z, Ma Y et al 2014 J. Phys. Chem. C 118 18713 | Giant Rectification Ratios of Azulene-like Dipole Molecular Junctions Induced by Chemical Doping in Armchair-Edged Graphene Nanoribbon Electrodes
[25] | Ren H, Li Q X, Luo Y et al 2009 Appl. Phys. Lett. 94 173110 | Graphene nanoribbon as a negative differential resistance device
[26] | Zhao P, Liu D S, Li S J et al 2013 Phys. Lett. A 377 1134 | Modulation of rectification and negative differential resistance in graphene nanoribbon by nitrogen doping
[27] | Li J, Yang S Y and Li S S 2015 Chin. Phys. Lett. 32 077102 | N-Doped Zigzag Graphene Nanoribbons on Si(001): a First-Principles Calculation
[28] | Jin C, Lan H, Peng L et al 2009 Phys. Rev. Lett. 102 205501 | Deriving Carbon Atomic Chains from Graphene
[29] | Chuvilin A, Meyer J C, Algara-Siller G et al 2009 New J. Phys. 11 083019 | From graphene constrictions to single carbon chains
[30] | Song Y, Xie Z, Zhang G P et al 2013 J. Phys. Chem. C 117 20951 | Bias Dependence of Rectifying Direction in a Diblock Co-oligomer Molecule with Graphene Nanoribbon Electrodes
[31] | Shen L, Zeng M, Yang S W et al 2010 J. Am. Chem. Soc. 132 11481 | Electron Transport Properties of Atomic Carbon Nanowires between Graphene Electrodes
[32] | Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803 | Energy Gaps in Graphene Nanoribbons
[33] | Brandbyge M, Mozos J L, Ordejon P et al 2002 Phys. Rev. B 65 165401R1 | Density-functional method for nonequilibrium electron transport
[34] | Ceperley D M and Aler B J 1980 Phys. Rev. Lett. 45 566 | Ground State of the Electron Gas by a Stochastic Method