[1] | Novoselov K S et al 2004 Science 306 666 | Electric Field Effect in Atomically Thin Carbon Films
[2] | Novoselov K S et al 2005 Nature 438 197 | Two-dimensional gas of massless Dirac fermions in graphene
[3] | Katsnelson M I 2007 Mater. Today 10 20 | Graphene: carbon in two dimensions
[4] | Balandin A A et al 2008 Nano Lett. 8 902 | Superior Thermal Conductivity of Single-Layer Graphene
[5] | Wan X, Chen K and Xu J 2014 Small 10 4443 | Interface Engineering for CVD Graphene: Current Status and Progress
[6] | Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 | The rise of graphene
[7] | Ye S et al 2016 J. Mater. Sci. Mater. Electron. 27 9624 | The synthesis of large area graphene/carbon nanotubes as additive material and their enhanced specific capacitance
[8] | Liu R et al 2011 J. Am. Chem. Soc. 133 15221 | Bottom-Up Fabrication of Photoluminescent Graphene Quantum Dots with Uniform Morphology
[9] | Tada K and Watanabe K 2002 Phys. Rev. Lett. 88 127601 | Ab Initio Study of Field Emission from Graphitic Ribbons
[10] | Morozov S V et al 2008 Phys. Rev. Lett. 100 16602 | Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer
[11] | Wintterlin J and Bocquet M L 2009 Surf. Sci. 603 1841 | Graphene on metal surfaces
[12] | Stoller M D et al 2008 Nano Lett. 8 3498 | Graphene-Based Ultracapacitors
[13] | Liu X et al 2015 Prog. Surf. Sci. 90 397 | Growth morphology and properties of metals on graphene
[14] | Calleja F et al 2014 Nat. Phys. 11 43 | Spatial variation of a giant spin–orbit effect induces electron confinement in graphene on Pb islands
[15] | Abanin D A, Lee P A and Levitov L S 2006 Phys. Rev. Lett. 96 176803 | Spin-Filtered Edge States and Quantum Hall Effect in Graphene
[16] | Yan X et al 2010 Nano Lett. 10 1869 | Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics
[17] | Yang W et al 2010 Angew. Chem. Int. Ed. 49 2114 | Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene?
[18] | Brey L and Fertig H A 2006 Phys. Rev. B 73 235411 | Electronic states of graphene nanoribbons studied with the Dirac equation
[19] | Kulkarni G S et al 2014 Nat. Commun. 5 4376 | Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection
[20] | Westervelt R M 2008 Science 320 324 | APPLIED PHYSICS: Graphene Nanoelectronics
[21] | Lee H et al 2005 Phys. Rev. B 72 174431 | Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states
[22] | Okada S and Oshiyama A 2001 Phys. Rev. Lett. 87 146803 | Magnetic Ordering in Hexagonally Bonded Sheets with First-Row Elements
[23] | Hernandez Y et al 2008 Nat. Nanotechnol. 3 563 | High-yield production of graphene by liquid-phase exfoliation of graphite
[24] | Gao W et al 2009 Nat. Chem. 1 403 | New insights into the structure and reduction of graphite oxide
[25] | Dreyer D R, Ruoff R S and Bielawski C W 2010 Angew. Chem. Int. Ed. 49 9336 | From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future
[26] | Riedl C, Coletti C and Starke U 2010 J. Phys. D 43 374009 | Structural and electronic properties of epitaxial graphene on SiC(0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation
[27] | Sun Z et al 2010 Nature 468 549 | Growth of graphene from solid carbon sources
[28] | Ueta H et al 2004 Surf. Sci. 560 183 | Highly oriented monolayer graphite formation on Pt(111) by a supersonic methane beam
[29] | Dong Y et al 2012 Carbon 50 4738 | Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid
[30] | Tian Y et al 2004 J. Am. Chem. Soc. 126 1180 | In Situ TA-MS Study of the Six-Membered-Ring-Based Growth of Carbon Nanotubes with Benzene Precursor
[31] | Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512 | Epitaxial Graphene on Cu(111)
[32] | van Wesep R G et al 2011 J. Chem. Phys. 134 171105 | Communication: Stable carbon nanoarches in the initial stages of epitaxial growth of graphene on Cu(111)
[33] | Ishihara M et al 2011 Mater. Lett. 65 2864 | Direct evidence of advantage of Cu(111) for graphene synthesis by using Raman mapping and electron backscatter diffraction
[34] | Niu T et al 2013 J. Am. Chem. Soc. 135 8409 | Growth Intermediates for CVD Graphene on Cu(111): Carbon Clusters and Defective Graphene
[35] | Chen X et al 2012 Appl. Phys. Lett. 100 163106 | Growth of triangle-shape graphene on Cu(111) surface
[36] | Sławińska J, Dabrowski P and Zasada I 2011 Phys. Rev. B 83 245429 | Doping of graphene by a Au(111) substrate: Calculation strategy within the local density approximation and a semiempirical van der Waals approach
[37] | Hernández-Rodríguez I et al 2015 Diamond Relat. Mater. 57 58 | Graphene growth on Pt(111) and Au(111) using a MBE carbon solid-source
[38] | Liu B et al 2011 Analyst 136 2218 | A graphene-based Au(111) platform for electrochemical biosensing based catalytic recycling of products on gold nanoflowers
[39] | Gao M et al 2011 Appl. Phys. Lett. 98 033101 | Epitaxial growth and structural property of graphene on Pt(111)
[40] | Sutter P, Sadowski J T and Sutter E 2009 Phys. Rev. B 80 245411 | Graphene on Pt(111): Growth and substrate interaction
[41] | Vinogradov N A et al 2011 J. Phys. Chem. C 115 9568 | Impact of Atomic Oxygen on the Structure of Graphene Formed on Ir(111) and Pt(111)
[42] | Rasool H I et al 2011 J. Am. Chem. Soc. 133 12536 | Atomic-Scale Characterization of Graphene Grown on Copper (100) Single Crystals
[43] | Cho J et al 2011 ACS Nano 5 3607 | Atomic-Scale Investigation of Graphene Grown on Cu Foil and the Effects of Thermal Annealing
[44] | Song J et al 2016 Nanotechnology 27 55602 | Bottom-up fabrication of graphene nanostructures on Ru$\left(10\bar{1}0\right)$
[45] | Song J et al 2016 Appl. Surf. Sci. 367 424 | Scanning tunneling microscopy and density functional theory investigations on molecular self-assembly of graphene on Ru(0 0 0 1)
[46] | Cai Y L et al 2014 Chem. Phys. Lett. 609 142 | The electronic and transport property of the CoPc on Au(111) surface
[47] | Hu F et al 2014 J. Chem. Phys. 140 94704 | Electronic and structural properties at the interface between iron-phthalocyanine and Cu(110)
[48] | Tao Y et al 2015 Surf. Sci. 641 135 | Electronic properties and adsorption structures of tetracene on the Ag(110) surface
[49] | Mao H Y et al 2005 Acta Phys. Sin. 54 460 (in Chinese) |
[50] | Wu Y et al 2004 Acta Phys. Sin. 53 1604 (in Chinese) |
[51] | Wang X F et al 2010 Europhys. Lett. 89 66004 | Electronic work function of the Cu (100) surface under different strain states
[52] | Baldacchini C et al 2003 Phys. Rev. B 68 195109 | Cu(100) surface: High-resolution experimental and theoretical band mapping
[53] | Katayama T et al 2010 J. Phys. Chem. Lett. 1 2917 | Thermally Activated Transformation from a Charge-Transfer State to a Rehybridized State of Tetrafluoro-tetracyanoquinodimethane on Cu(100)
[54] | Tibbetts G G et al 1977 Phys. Rev. B 15 3652 | Electronic properties of adsorbed layers of nitrogen, oxygen, and sulfur on copper (100)
[55] | Siokou A et al 2011 Appl. Surf. Sci. 257 9785 | Surface refinement and electronic properties of graphene layers grown on copper substrate: An XPS, UPS and EELS study
[56] | Wu Q, Hong G and Lee S T 2013 Org. Electron. 14 542 | Modification of CuPc/graphene interfacial electronic structure with F16CuPc
[57] | Qu B et al 2015 Surf. & Interface Anal. 47 793 |
[58] | Zhang Y H et al 2016 Acta Phys. Sin. 65 157901 (in Chinese) |
[59] | Han H et al 2004 Physica B 352 36 | The electronic states of ordered thin films of perylene on Ag (110)