[1] | Chen X and Mao S S 2007 Chem. Rev. 107 2891 | Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications
[2] | Mor G K, Varghese O K, Paulose M, Shankar K and Grimes C A 2006 Sol. Energy Mater. Sol. Cells 90 2011 | A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications
[3] | Kamat P V 2012 J. Phys. Chem. C 116 11849 | TiO 2 Nanostructures: Recent Physical Chemistry Advances
[4] | Chen D and Caruso R A 2012 Adv. Funct. Mater. 22 1966 | Facile Synthesis of Monodisperse Mesoporous Zirconium Titanium Oxide Microspheres with Varying Compositions and High Surface Areas for Heavy Metal Ion Sequestration
[5] | Daghrir R, Drogui P and Robert D 2013 Ind. Eng. Chem. Res. 52 3581 | Modified TiO 2 For Environmental Photocatalytic Applications: A Review
[6] | Movafaghi S et al 2016 Lap Chip 16 3204 | Tunable superomniphobic surfaces for sorting droplets by surface tension
[7] | Movafaghi S et al 2017 Adv. Healthcare Mater. 6 1600717 | Hemocompatibility of Superhemophobic Titania Surfaces
[8] | Tétreault N and Gratzel M 2012 Energy Environ. Sci. 5 8506 | Novel nanostructures for next generation dye-sensitized solar cells
[9] | Zhang Q F and Cao G Z 2011 J. Mater. Chem. 21 6769 | Hierarchically structured photoelectrodes for dye-sensitized solar cells
[10] | Mora-Ser I, Gimnez S, Fabregat-Santiago F, Gmez R, Shen Q, Toyoda T and Bisquert J 2009 Acc. Chem. Res. 42 1848 | Recombination in Quantum Dot Sensitized Solar Cells
[11] | Grätzel M 2009 Acc. Chem. Res. 42 1788 | Recent Advances in Sensitized Mesoscopic Solar Cells
[12] | Boschloo G, Hagfeldt A, Sun L, Kloo L and Pettersson H 2010 Chem. Rev. 110 6595 | Dye-Sensitized Solar Cells
[13] | Rühle S, Shalom M and Zaban A 2010 ChemPhysChem 11 2290 | Quantum-Dot-Sensitized Solar Cells
[14] | Lan X, Bai J, Masala S, M Thon S, Ren Y et al 2013 Adv. Mater. 25 1769 | Self-Assembled, Nanowire Network Electrodes for Depleted Bulk Heterojunction Solar Cells
[15] | Hoseinzadeh T, Ghorannevis Z and Ghoranneviss M 2017 Appl. Phys. A 123 436 | Effect of different electrolyte concentrations on TiO2 anodized nanotubes physical properties
[16] | Badescu V and Mormirlan M 1996 J. Cryst. Growth 169 309 | Statistics of TiO2 crystal growth in air on a metallic surface heated at temperatures in the range of 900–1100°C
[17] | Li S, Zhang G, Guo D, Ligang Yu and Zhang W 2009 J. Phys. Chem. C 113 12759 | Anodization Fabrication of Highly Ordered TiO 2 Nanotubes
[18] | Czerwinski F and Szpunar J A 1998 Micron 29 201 | Atomic force microscopy imaging of the growth features on the surface of rutile
[19] | Fujishima A, Rao T N and Tryk D A 2000 J. Photochem. Photobiol. C 1 1 | Titanium dioxide photocatalysis
[20] | Tryk D A, Fujishima A and Honda K 2000 Electrochim. Acta 45 2363 | Recent topics in photoelectrochemistry: achievements and future prospects
[21] | Herrmann J M 2005 Top. Catalysis 34 49 | Heterogeneous photocatalysis: state of the art and present applications In honor of Pr. R.L. Burwell Jr. (1912–2003), Former Head of Ipatieff Laboratories, Northwestern University, Evanston (Ill).
[22] | Yu J G and Wang B 2010 Appl. Catal. B 94 295 | Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays
[23] | Wood D and Tauc J 1972 Phys. Rev. B 5 3144 | Weak Absorption Tails in Amorphous Semiconductors