[1] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 | Two-dimensional gas of massless Dirac fermions in graphene
[2] | Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 | Experimental observation of the quantum Hall effect and Berry's phase in graphene
[3] | Han M Y, Özyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805 | Energy Band-Gap Engineering of Graphene Nanoribbons
[4] | Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803 | Energy Gaps in Graphene Nanoribbons
[5] | Wang X, Ouyang Y, Jiao L, Wang H, Xie L, Wu J, Guo J and Dai H 2011 Nat. Nanotechnol. 6 563 | Graphene nanoribbons with smooth edges behave as quantum wires
[6] | Li Y Y, Chen M X, Weinert M and Li L 2014 Nat. Commun. 5 4311 | Direct experimental determination of onset of electron–electron interactions in gap opening of zigzag graphene nanoribbons
[7] | Wang W X, Zhou M, Li X, Li S Y, Wu X, Duan W and He L 2016 Phys. Rev. B 93 241403(R) | Energy gaps of atomically precise armchair graphene sidewall nanoribbons
[8] | Jaskólski W, Ayuela A, Pelc M, Santos H and Chico L 2011 Phys. Rev. B 83 235424 | Edge states and flat bands in graphene nanoribbons with arbitrary geometries
[9] | Yazyev O V, Capaz R B and Louie S G 2011 Phys. Rev. B 84 115406 | Theory of magnetic edge states in chiral graphene nanoribbons
[10] | Sun L, Wei P, Wei J, Sanvito S and Hou S 2011 J. Phys.: Condens. Matter 23 425301 | From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges
[11] | Golor M, Lang T C and Wessel S 2013 Phys. Rev. B 87 155441 | Quantum Monte Carlo studies of edge magnetism in chiral graphene nanoribbons
[12] | Carvalho A R, Warnes J H and Lewenkopf C H 2014 Phys. Rev. B 89 245444 | Edge magnetization and local density of states in chiral graphene nanoribbons
[13] | Jaskolski W and Ayuela A 2014 Solid State Commun. 196 1 | Coulomb edge effects in graphene nanoribbons
[14] | Berahman M, Asad M, Sanaee M and Sheikhi M H 2015 Opt. Quantum Electron. 47 3289 | Optical properties of chiral graphene nanoribbons: a first principle study
[15] | Yang L, Cohen M L and Louie S G 2007 Nano Lett. 7 3112 | Excitonic Effects in the Optical Spectra of Graphene Nanoribbons
[16] | Lu Y, Zhao S, Lu W, Liu H and Liang W 2014 J. Appl. Phys. 115 103701 | Excitonic effects of E11, E22, and E33 in armchair-edged graphene nanoribbons
[17] | Yang L, Cohen M L and Louie S G 2008 Phys. Rev. Lett. 101 186401 | Magnetic Edge-State Excitons in Zigzag Graphene Nanoribbons
[18] | Lu Y, Lu W G, Liang W J and Liu H 2013 Phys. Rev. B 88 165425 | Energy splitting and optical activation of triplet excitons in zigzag-edged graphene nanoribbons
[19] | Cheiwchanchamnangij T and Lambrecht W R L 2012 Phys. Rev. B 85 205302 | Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS
[20] | Tran V, Soklaski R, Liang Y and Yang L 2014 Phys. Rev. B 89 235319 | Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus
[21] | Pariser R and Parr R G 1953 J. Chem. Phys. 21 466 | A Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. I.
| Pople J A 1953 Trans. Faraday Soc. 49 1375 | Electron interaction in unsaturated hydrocarbons
[22] | McWilliams P C M, Hayden G W and Soos Z G 1991 Phys. Rev. B 43 9777 and references therein | Theory of even-parity states and two-photon spectra of conjugated polymers
[23] | Abe S, Yu J and Su W P 1992 Phys. Rev. B 45 8264 | Singlet and triplet excitons in conjugated polymers
[24] | Zhao H and Mazumdar S 2004 Phys. Rev. Lett. 93 157402 | Electron-Electron Interaction Effects on the Optical Excitations of Semiconducting Single-Walled Carbon Nanotubes
[25] | Ohno K 1964 Theor. Chim. Acta 2 219 | Some remarks on the Pariser-Parr-Pople method
[26] | Rohlfing M and Louie S G 2000 Phys. Rev. B 62 4927 | Electron-hole excitations and optical spectra from first principles
[27] | Ezawa M 2006 Phys. Rev. B 73 045432 | Peculiar width dependence of the electronic properties of carbon nanoribbons
[28] | Jiang Z and Song Y 2015 Physica B 464 61 | Band gap oscillation and novel transport property in ultrathin chiral graphene nanoribbons