[1] | Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I and Kurachi Y 2010 Physiol. Rev. 90 291 | Inwardly Rectifying Potassium Channels: Their Structure, Function, and Physiological Roles
[2] | Kubo Y, Baldwin T J, Jan Y N and Jan L Y 1993 Nature 362 127 | Primary structure and functional expression of a mouse inward rectifier potassium channel
[3] | Doupnik C A, Davidson N and Lester H A 1995 Curr. Opin. Neurobiol. 5 268 | The inward rectifier potassium channel family
[4] | So I, Ashmole I, Davies N W, Sutcliffe M J and Stanfield P R 2001 J. Physiol. 531 37 | The K + channel signature sequence of murine Kir2.1: mutations that affect microscopic gating but not ionic selectivity
[5] | Guo D, Ramu Y, Klem A M and Lu Z 2003 J. Gen. Physiol. 121 261 | Mechanism of Rectification in Inward-rectifier K + Channels
[6] | Lee S J, Wang S, Borschel W, Heyman S, Gyore J and Nichols C G 2013 Nat. Commun. 4 2786 |
[7] | Caballero R, Dolz-Gaiton P, Gomez R, Amoros I, Barana A, Gonzalez De La Fuente M, Osuna L, Duarte J, Lopez-Izquierdo A, Moraleda I, Galvez E, Sanchez-Chapula J A, Tamargo J and Delpon E 2010 Proc. Natl. Acad. Sci. USA 107 15631 | Flecainide increases Kir2.1 currents by interacting with cysteine 311, decreasing the polyamine-induced rectification
[8] | Chang H K and Shieh R C 2013 Biochim. Biophys. Acta 1828 765 | Voltage-dependent inhibition of outward Kir2.1 currents by extracellular spermine
[9] | Matsuda H, Saigusa A and Irisawa H 1987 Nature 325 156 | Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+
[10] | Lu Z and Mackinnon R 1994 Nature 371 243 | Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel
[11] | Fakler B, Brandle U, Bond C, Glowatzki E, Konig C, Adelman J P, Zenner H P and Ruppersberg J P 1994 FEBS Lett. 356 199 | A structural determinant of differential sensitivity of cloned inward rectifier K + channels to intracellular spermine
[12] | Ficker E, Taglialatela M, Wible B A, Henley C M and Brown A M 1994 Science 266 1068 | Spermine and spermidine as gating molecules for inward rectifier K+ channels
[13] | Lopatin A N, Makhina E N and Nichols C G 1994 Nature 372 366 | Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification
[14] | Fakler B, Brandle U, Glowatzki E, Weidemann S, Zenner H P and Ruppersberg J P 1995 Cell 80 149 | Strong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine
[15] | Guo D and Lu Z 2003 J. Gen. Physiol. 122 485 | Interaction Mechanisms between Polyamines and IRK1 Inward Rectifier K + Channels
[16] | Thompson G A, Leyland M L, Ashmole I, Sutcliffe M J and Stanfield P R 2000 J. Physiol. 526 231 | Residues beyond the selectivity filter of the K + channel Kir2.1 regulate permeation and block by external Rb + and Cs +
[17] | Fujiwara Y and Kubo Y 2002 J. Gen. Physiol. 120 677 | Ser165 in the Second Transmembrane Region of the Kir2.1 Channel Determines its Susceptibility to Blockade by Intracellular Mg 2+
[18] | Stanfield P R, Davies N W, Shelton P A, Sutcliffe M J, Khan I A, Brammar W J and Conley E C 1994 J. Physiol. 478 1 | A single aspartate residue is involved in both intrinsic gating and blockage by Mg2+ of the inward rectifier, IRK1.
[19] | Liu T A, Chang H K and Shieh R C 2012 J. Gen. Physiol. 139 245 | Revisiting inward rectification: K ions permeate through Kir2.1 channels during high-affinity block by spermidine
[20] | Xie L H, John S A, Ribalet B and Weiss J N 2004 J. Physiol. 561 159 | Regulation of gating by negative charges in the cytoplasmic pore in the Kir2.1 channel
[21] | Huang C W and Kuo C C 2014 Pflügers Arch. 466 275 | The bundle crossing region is responsible for the inwardly rectifying internal spermine block of the Kir2.1 channel
[22] | Huang C L, Feng S and Hilgemann D W 1998 Nature 391 803 | Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by G|[beta]
[23] | Xiao J, Zhen X G and Yang J 2003 Nat. Neurosci. 6 811 | Localization of PIP2 activation gate in inward rectifier K+ channels
[24] | Kobrinsky E, Mirshahi T, Zhang H, Jin T and Logothetis D E 2000 Nat. Cell Biol. 2 507 |
[25] | D'avanzo N, Lee S J, Cheng W W and Nichols C G 2013 J. Biol. Chem. 288 16726 | Energetics and Location of Phosphoinositide Binding in Human Kir2.1 Channels
[26] | Taglialatela M, Ficker E, Wible B A and Brown A M 1995 EMBO J. 14 5532 |
[27] | Yang J, Jan Y N and Jan L Y 1995 Neuron 14 1047 | Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel
[28] | Kubo Y and Murata Y 2001 J. Physiol. 531 645 | Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K + channel
[29] | Zhang H, He C, Yan X, Mirshahi T and Logothetis D E 1999 Nat. Cell Biol. 1 183 |
[30] | Soom M, Schonherr R, Kubo Y, Kirsch C, Klinger R and Heinemann S H 2001 FEBS Lett. 490 49 | Multiple PIP 2 binding sites in Kir2.1 inwardly rectifying potassium channels
[31] | Lopes C M, Zhang H, Rohacs T, Jin T, Yang J and Logothetis D E 2002 Neuron 34 933 | Alterations in Conserved Kir Channel-PIP2 Interactions Underlie Channelopathies
[32] | Li J, Lu S, Liu Y, Pang C, Chen Y, Zhang S, Yu H, Long M, Zhang H, Logothetis D E, Zhan Y and An H 2015 Sci. Rep. 5 11289 | Identification of the Conformational transition pathway in PIP2 Opening Kir Channels
[33] | Murata Y, Iwasaki H, Sasaki M, Inaba K and Okamura Y 2005 Nature 435 1239 | Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor
[34] | Murata Y and Okamura Y 2007 J. Physiol. 583 875 | Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP 2
[35] | Okamura Y, Murata Y and Iwasaki H 2009 J. Physiol. 587 513 | Voltage-sensing phosphatase: actions and potentials
[36] | Kohout S C, Bell S C, Liu L, Xu Q, Minor D L, Jr. and Isacoff E Y 2010 Nat. Chem. Biol. 6 369 | Electrochemical coupling in the voltage-dependent phosphatase Ci-VSP
[37] | Rodriguez-Menchaca A A, Adney S K, Tang Q Y, Meng X Y, Rosenhouse-Dantsker A, Cui M and Logothetis D E 2012 Proc. Natl. Acad. Sci. USA 109 E2399 | PIP2 controls voltage-sensor movement and pore opening of Kv channels through the S4-S5 linker
[38] | An H L, Lu S Q, Li J W, Meng X Y, Zhan Y, Cui M, Long M, Zhang H L and Logothetis D E 2012 J. Biol. Chem. 287 42278 | The Cytosolic GH Loop Regulates the Phosphatidylinositol 4,5-Bisphosphate-induced Gating Kinetics of Kir2 Channels
[39] | Sakata S, Hossain M I and Okamura Y 2011 J. Physiol. 589 2687 | Coupling of the phosphatase activity of Ci-VSP to its voltage sensor activity over the entire range of voltage sensitivity
[40] | Hansen S B, Tao X and Mackinnon R 2011 Nature 477 495 | Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2