Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator
-
Abstract
We investigate the effects of the initial-slip term by studying the dissipation-induced transition probabilities between any two eigenstates of a simple harmonic oscillator. The general analytical expressions for the transition probabilities are obtained, then the special cases of transition probabilities ignoring the Brownian motion from the ground state to the first few excited states are discussed. It is found that the initial-slip term not only makes the forbidden transitions between states of different parity possible but also lifts the initial value of the transition probabilities. -
-
References
[1] Weiss U 1999 Quantum Dissipative Systems Singapore: World Scientific[2] Caldeira A O and Leggett A J 1981 Phys. Rev. Lett. 46 211 doi: 10.1103/PhysRevLett.46.211[3] Caldeira A O and Leggett A J 1983Ann. Phys. 149 374 doi: 10.1016/0003-49168390202-6[4] Ford G W and Kac M 1987 J. Stat. Phys. 46 803 doi: 10.1007/BF01011142[5] Ford G W et al. 1988 Phys. Rev. A 37 4419 doi: 10.1103/PhysRevA.37.4419[6] Leggett A J et al. 1987 Rev. Mod. Phys. 59 1 doi: 10.1103/RevModPhys.59.1[7] You B and Cen L X 2015 Acta Phys. Sin. 64 210302 in Chinese[8] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems Oxford: Oxford University Press[9] Carmichael H 1993 An Open System Approach to Quantum Optics Berlin: Springer[10] Feng X Q et al. 2016 Acta Phys. Sin. 65 044205 in Chinese[11] Zwanzig 1973 J. Stat. Phys. 9 215 doi: 10.1007/BF01008729[12] Ingold G L 2002 Lect. Notes Phys. 611 1 doi: 10.1007/3-540-45855-7_1[13] Bez W 1980 Z. Phys. B 39 319 doi: 10.1007/BF01305831[14] Cortés E et al. 1985 J. Chem. Phys. 82 2708 doi: 10.1063/1.448268[15] Canizares J S and Sols F 1994 Physica A 212 181 doi: 10.1016/0378-43719490146-5[16] Feynman R P 1948 Rev. Mod. Phys. 20 367 doi: 10.1103/RevModPhys.20.367[17] Feynman R P and Hibbs A R 1965 Quantum Mechanics and Path Integrals New York: McGraw-Hill[18] Dekker H 1981 Phys. Rep. 80 1 and references therein doi: 10.1016/0370-15738190033-8[19] Um C I et al. 2002 Phys. Rep. 362 63 and references therein doi: 10.1016/S0370-15730100077-1[20] Feynman R and Vernon F L 1963 Ann. Phys. N. Y. 24 118 doi: 10.1016/0003-49166390068-X[21] Caldeira A O and Leggett A J 1983 Physica A 121 587 doi: 10.1016/0378-43718390013-4[22] Hakim V and Ambegaokar V 1985 Phys. Rev. A 32 423 doi: 10.1103/PhysRevA.32.423[23] Haake F and Reibold R 1985 Phys. Rev. A 32 2462 doi: 10.1103/PhysRevA.32.2462[24] Unruh W G and Zurek W H 1989 Phys. Rev. D 40 1071 doi: 10.1103/PhysRevD.40.1071[25] Grabert H et al. 1988 Phys. Rep. 168 115 doi: 10.1016/0370-15738890023-3[26] Halliwell J J and Zoupas A 1995 Phys. Rev. D 52 7294 doi: 10.1103/PhysRevD.52.7294[27] Hu B L et al. 1992 Phys. Rev. D 45 2843 doi: 10.1103/PhysRevD.45.2843[28] Hu B L et al. 1993 Phys. Rev. D 47 1576 doi: 10.1103/PhysRevD.47.1576[29] Halliwell J J and Yu T 1996 Phys. Rev. D 53 2012 doi: 10.1103/PhysRevD.53.2012[30] Chou C H et al. 2008 Phys. Rev. E 77 011112 doi: 10.1103/PhysRevE.77.011112[31] Yu L Y and Sun C P 1994 Phys. Rev. A 49 592 doi: 10.1103/PhysRevA.49.592[32] Yu L Y 1995 Phys. Lett. A 202 167 doi: 10.1016/0375-96019500274-7[33] Landovitz L F et al. 1979 Phys. Rev. A 20 1162 doi: 10.1103/PhysRevA.20.1162[34] Landovitz L F et al. 1980 J. Math. Phys. 21 2159 doi: 10.1063/1.524724[35] Landovitz L F et al. 1983 J. Chem. Phys. 78 291 doi: 10.1063/1.444499[36] Um C I et al. 1987J. Phys. A 20 611 doi: 10.1088/0305-4470/20/3/024[37] Croxson P 1994 Phys. Rev. A 49 588 doi: 10.1103/PhysRevA.49.588[38] Papadopoulous G J and Hadjiagapiou I 1999 Phys. Rev. A 59 3127 doi: 10.1103/PhysRevA.59.3127[39] Shao Z Q et al. 2014 J. Chem. Phys. 141 224110 doi: 10.1063/1.4903178[40] Lai M Y et al. 2016 Physica A 453 305 doi: 10.1016/j.physa.2016.02.001[41] Hanke A and Zwerger W 1995 Phys. Rev. E 52 6875 doi: 10.1103/PhysRevE.52.6875 -
Related Articles
[1] WEN Wu, SHEN Hong. K and K* Exchange Effects in Lambda Hypernuclei [J]. Chin. Phys. Lett., 2010, 27(4): 042101. doi: 10.1088/0256-307X/27/4/042101 [2] YANG Rong-Jia, GAO Xiang-Ting. Observational Constraints on Purely Kinetic k-Essence Dark Energy Models [J]. Chin. Phys. Lett., 2009, 26(8): 089501. doi: 10.1088/0256-307X/26/8/089501 [3] SUN Liang. Essence of Inviscid Shear Instability: a Point View of Vortex Dynamics [J]. Chin. Phys. Lett., 2008, 25(4): 1343-1346. [4] YANG Rong-Jia, ZHANG Shuang-Nan. Theoretical Constraint on Purely Kinetic k-Essence [J]. Chin. Phys. Lett., 2008, 25(1): 344-346. [5] HUANG Yong-Sheng, WANG Nai-Yan, DUAN Xiao-Jiao, LAN Xiao-Fei, TAN Zhi-Xin, TANG Xiu-Zhang, HE Ye-Xi. Neutron Generation and Kinetic Energy of Expanding Laser Plasmas [J]. Chin. Phys. Lett., 2007, 24(10): 2792-2795. [6] GAO Zhe. A New Kinetic Mode Driven by Electron Temperature Gradient [J]. Chin. Phys. Lett., 2004, 21(5): 881-883. [7] GUO Hua, ZHOU Ran, LIU Yu-Xin, LIU Bo, LI Xi-Guo. In-Medium K+ and K- Production and K- Condensation in Supernova Matter [J]. Chin. Phys. Lett., 2004, 21(5): 817-820. [8] ZHENG Xiao-Ping, LI Jia-Rong. Covariant Perturbation Theory of Non-Abelian Kinetic Theory [J]. Chin. Phys. Lett., 2002, 19(1): 23-25. [9] WANG Shaofeng. Existence of Localized Modes in a Purely Anharmonic Chain [J]. Chin. Phys. Lett., 1995, 12(2): 95-97. [10] HU Xiwei. A New Turbulent Collision Integral in Plasma Kinetic Equation [J]. Chin. Phys. Lett., 1992, 9(4): 183-186.