Chin. Phys. Lett.  2023, Vol. 40 Issue (11): 117402    DOI: 10.1088/0256-307X/40/11/117402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Spin Hall Magnetoresistance in Pt/BiFeO$_{3}$ Bilayer
Anpeng He1, Yu Lu2, Jun Du2*, Yufei Li3, Zhong Shi3, Di Wu2, and Qingyu Xu1,2*
1School of Physics, Southeast University, Nanjing 211189, China
2National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
3School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Cite this article:   
Anpeng He, Yu Lu, Jun Du et al  2023 Chin. Phys. Lett. 40 117402
Download: PDF(3530KB)   PDF(mobile)(3532KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Multiferroic materials are general antiferromagnets with negligibly small net magnetization, which strongly limits their magnetoelectric applications in spintronics. Spin Hall magnetoresistance (SMR) is sensitive to the orientation of the Néel vector, which can be applied for the detection of antiferromagnetic states. Here, we apply SMR on the unique room-temperature antiferromagnetic multiferroic material BiFeO$_{3}$ (BFO). The angular dependence of SMR in a bilayer of epitaxial BFO (001) and heavy metal Pt is studied. By rotating the sample under a magnetic field of 80 kOe in the film plane, the resistance shows the maximum when the field is perpendicular to the current while it shows the minimum when the field is along the current. This can be well explained by the SMR in the bilayer of heavy metal/antiferromagnet with the relative orientation between the Néel vector and current direction. In contrast, the angular dependence of the resistance of Pt directly deposited on a SrTiO$_{3}$ (001) substrate shows a 90$^{\circ}$ shift with the magnetic field rotating in the film plane, which originates from the Hanle magnetoresistance of Pt. The obtained spin mixing conductance at the Pt/BFO interface clearly confirms the efficient spin transmission. Our results provide a possible solution for applications of antiferromagnetic multiferroic materials in spintronics.
Received: 28 July 2023      Editors' Suggestion Published: 14 November 2023
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  73.43.Qt (Magnetoresistance)  
  77.55.Nv (Multiferroic/magnetoelectric films)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/11/117402       OR      https://cpl.iphy.ac.cn/Y2023/V40/I11/117402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Anpeng He
Yu Lu
Jun Du
Yufei Li
Zhong Shi
Di Wu
and Qingyu Xu
[1] Hill N A 2000 J. Phys. Chem. B 104 6694
[2] Wang K F, Liu J M, and Ren Z F 2009 Adv. Phys. 58 321
[3] Wang J et al. 2003 Science 299 1719
[4] Sosnowska I, Neumaier T P, and Steichele E 1982 J. Phys. C 15 4835
[5] Huang F Z et al. 2006 Appl. Phys. Lett. 89 242914
[6] Yu P et al. 2010 Phys. Rev. Lett. 105 027201
[7] Xu Q Y et al. 2015 J. Appl. Phys. 117 17D707
[8] Nakayama H et al. 2013 Phys. Rev. Lett. 110 206601
[9] Dyakonov M I 2007 Phys. Rev. Lett. 99 126601
[10] Chen Y T et al. 2013 Phys. Rev. B 87 144411
[11] Lin W W and Chien C L 2017 Phys. Rev. Lett. 118 067202
[12] Baldrati L et al. 2018 Phys. Rev. B 98 024422
[13] Han J H et al. 2014 Phys. Rev. B 90 144431
[14] Ji Y et al. 2018 Appl. Phys. Lett. 112 232404
[15] Miao J et al. 2022 Appl. Phys. Lett. 120 062406
[16] Xue X B et al. 2013 Eur. Phys. J. B 86 121
[17] Wen Z et al. 2014 Appl. Phys. Lett. 104 042907
[18] Gutiérrez D et al. 2012 Phys. Rev. B 86 125309
[19] Catalan G and Scott J F 2009 Adv. Mater. 21 2463
[20] Lee D et al. 2014 Adv. Mater. 26 5005
[21] Guo E J, Dörr K, and Herklotz A 2012 Appl. Phys. Lett. 101 242908
[22] Sando D et al. 2013 Nat. Mater. 12 641
[23] Geprägs S et al. 2020 J. Appl. Phys. 127 243902
[24] Vélez S et al. 2016 Phys. Rev. Lett. 116 016603
[25] Wu H et al. 2016 Phys. Rev. B 94 174407
Related articles from Frontiers Journals
[1] Gaojie Zhang, Qingyuan Luo, Xiaokun Wen, Hao Wu, Li Yang, Wen Jin, Luji Li, Jia Zhang, Wenfeng Zhang, Haibo Shu, and Haixin Chang. Giant 2D Skyrmion Topological Hall Effect with Ultrawide Temperature Window and Low-Current Manipulation in 2D Room-Temperature Ferromagnetic Crystals[J]. Chin. Phys. Lett., 2023, 40(11): 117402
[2] Xinlong Dong, Xin Jia, Zhi Yan, Xuemin Shen, Zeyu Li, Zhenhua Qiao, and Xiaohong Xu. Spin Transport Properties of MnBi$_{2}$Te$_{4}$-Based Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2023, 40(8): 117402
[3] Guibin Lan, Hongjun Xu, Yu Zhang, Chen Cheng, Bin He, Jiahui Li, Congli He, Caihua Wan, Jiafeng Feng, Hongxiang Wei, Jia Zhang, Xiufeng Han, and Guoqiang Yu. Giant Tunneling Magnetoresistance in Spin-Filter Magnetic Tunnel Junctions Based on van der Waals A-Type Antiferromagnet CrSBr[J]. Chin. Phys. Lett., 2023, 40(5): 117402
[4] Lifen Wang. Cubic Ice Captured by In Situ Transmission Electron Microscope[J]. Chin. Phys. Lett., 2023, 40(5): 117402
[5] Wen Jin, Gaojie Zhang, Hao Wu, Li Yang, Wenfeng Zhang, and Haixin Chang. Development of Intrinsic Room-Temperature 2D Ferromagnetic Crystals for 2D Spintronics[J]. Chin. Phys. Lett., 2023, 40(5): 117402
[6] Zhaonian Jin, Minhang Song, Henan Fang, Lin Chen, Jiangwei Chen, and Zhikuo Tao. Characteristics and Applications of Current-Driven Magnetic Skyrmion Strings[J]. Chin. Phys. Lett., 2022, 39(10): 117402
[7] Lin Huang, Yongjian Zhou, Tingwen Guo, Feng Pan, and Cheng Song. Tunable Spin Hall Magnetoresistance in All-Antiferromagnetic Heterostructures[J]. Chin. Phys. Lett., 2022, 39(4): 117402
[8] Xiufeng Han, Yu Zhang, Yizhan Wang, Li Huang, Qinli Ma, Houfang Liu, Caihua Wan, Jiafeng Feng, Lin Yin, Guoqiang Yu, Tian Yu, and Yu Yan. High-Sensitivity Tunnel Magnetoresistance Sensors Based on Double Indirect and Direct Exchange Coupling Effect[J]. Chin. Phys. Lett., 2021, 38(12): 117402
[9] Qian Ye, Yu-Hao Shen, and Chun-Gang Duan. Ferroelectric Controlled Spin Texture in Two-Dimensional NbOI$_{2}$ Monolayer[J]. Chin. Phys. Lett., 2021, 38(8): 117402
[10] Yu Suo, Hao Yang, and Jiyong Fu. Distinct Three-Level Spin–Orbit Control Associated with Electrically Controlled Band Swapping[J]. Chin. Phys. Lett., 2020, 37(11): 117402
[11] Yingjie Zhang, Pengfei Liu, Hongyi Sun, Shixuan Zhao, Hu Xu, and Qihang Liu. Symmetry-Assisted Protection and Compensation of Hidden Spin Polarization in Centrosymmetric Systems[J]. Chin. Phys. Lett., 2020, 37(8): 117402
[12] Ya-Bo Chen, Xiao-Kuo Yang, Tao Yan, Bo Wei, Huan-Qing Cui, Cheng Li, Jia-Hao Liu, Ming-Xu Song, and Li Cai. Voltage-Driven Adaptive Spintronic Neuron for Energy-Efficient Neuromorphic Computing[J]. Chin. Phys. Lett., 2020, 37(7): 117402
[13] Si-Wei Mao, Jun Lu, Long Yang, Xue-Zhong Ruan, Hai-Long Wang, Da-Hai Wei, Yong-Bing Xu, Jian-Hua Zhao. Ultrafast Magnetization Precession in Perpendicularly Magnetized $L1_{0}$-MnAl Thin Films with Co$_{2}$MnSi Buffer Layers[J]. Chin. Phys. Lett., 2020, 37(5): 117402
[14] He-Nan Fang, Yuan-Yuan Zhong, Ming-Wen Xiao, Xuan Zang, Zhi-Kuo Tao. Effect of Lattice Distortion on the Magnetic Tunnel Junctions Consisting of Periodic Grating Barrier and Half-Metallic Electrodes[J]. Chin. Phys. Lett., 2020, 37(3): 117402
[15] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 117402
Viewed
Full text


Abstract