FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Erbium-Doped Zirconia-Alumina Silica Glass-Based Fiber as a Saturable Absorber for High Repetition Rate Q-Switched All-Fiber Laser Generation |
P. Harshavardhan Reddy1,2, N. A. A. Kadir3, M. C. Paul1**, S. Das1, A. Dhar1, E. I. Ismail3, A. A. Latiff4,5, S. W. Harun3** |
1Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India 2Academy of Scientific and Innovative Research, CSIR-CGCRI Campus, Kolkata 700032, India 3Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia 4Photonics Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia 5Faculty of Electronic and Computer Engineering (FKEKK), Universiti Teknikal Malaysia Melaka, Melaka 76100, Malaysia
|
|
Cite this article: |
P. Harshavardhan Reddy, N. A. A. Kadir, M. C. Paul et al 2017 Chin. Phys. Lett. 34 084203 |
|
|
Abstract We propose and demonstrate a Q-switched erbium-doped fiber laser (EDFL) using an erbium-doped zirconia-alumina silica glass-based fiber (Zr-EDF) as a saturable absorber. As a 16-cm-long Zr-EDF is incorporated into a ring EDFL cavity, a stable Q-switching pulse train operating at 1565 nm wavelength is successfully obtained. The repetition rate is tunable from 33.97 kHz to 71.23 kHz by increasing the pump power from the threshold of 26 mW to the maximum of 74 mW. The highest pulse energy of 26.67 nJ is obtained at the maximum pump power.
|
|
Received: 08 May 2017
Published: 22 July 2017
|
|
PACS: |
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Gd
|
(Q-switching)
|
|
42.50.Nn
|
(Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)
|
|
|
Fund: Supported by the Postgraduate Research of Malaysia under Grant No PG098-2014B, and the CSIR of Government of India. |
|
|
[1] | Yap Y, Richard M, Pua C, Harun S and Ahmad H 2012 Chin. Opt. Lett. 10 041405 | [2] | Kurkov A, Sadovnikova Y E, Marakulin A and Sholokhov E 2010 Laser Phys. Lett. 7 795 | [3] | Tsai T Y and Fang Y C 2009 Opt. Express 17 1429 | [4] | Zhou D P, Wei L, Dong B and Liu W K 2010 IEEE Photon. Technol. Lett. 22 9 | [5] | Svelto O and Hanna D 1998 Principles Of Lasers 4th edn (New York: Plenum) | [6] | Lecourt J B, Martel G, Guézo M, Labbé C and Loualiche S 2006 Opt. Commun. 263 71 | [7] | Popa D, Sun Z, Hasan T, Torrisi F, Wang F and Ferrari A 2011 Appl. Phys. Lett. 98 073106 | [8] | Huang J, Huang S, Chang H, Su K, Chen Y and Huang K 2008 Opt. Express 16 3002 | [9] | Laroche M, Chardon A, Nilsson J, Shepherd D, Clarkson W, Girard S and Moncorgé R 2002 Opt. Lett. 27 1980 | [10] | Okhotnikov O, Grudinin A and Pessa M 2004 New J. Phys. 6 177 | [11] | Yamashita S 2012 J. Lightwave Technol. 30 427 | [12] | Zhang H, Tang D, Zhao L, Bao Q, Loh K P, Lin B and Tjin S C 2010 Laser Phys. Lett. 7 591 | [13] | Wang L and Haus J W 2016 Opt. Commun. 367 292 | [14] | Latiff A, Kadir N, Ismail E, Shamsuddin H, Ahmad H and Harun S 2017 Opt. Commun. 389 29 | [15] | Meng Z, Stewart G and Whitenett G 2006 J. Lightwave Technol. 24 2179 | [16] | Hamzah A, Paul M C, Harun S, Huri N, Lokman A, Pal M, Das S, Bhadra S K, Ahmad H and Yoo S 2011 Laser Phys. 21 176 | [17] | Mi W, Tian J, Tian W, Dai J, Wang X and Liu X 2012 Ceram. Int. 38 5575 | [18] | Li X, Liu X, Hu X, Wang L, Lu H, Wang Y and Zhao W 2010 Opt. Lett. 35 3249 | [19] | Tao M, Ye X, Wang P, Yu T, Wang Z, Yang P and Feng G 2013 Laser Phys. 23 105104 | [20] | Li J F, Luo H Y, Zhai B, Lu R G, Guo Z N, Zhang H and Liu Y 2016 Sci. Rep. 6 30361 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|