Chin. Phys. Lett.  2017, Vol. 34 Issue (2): 025101    DOI: 10.1088/0256-307X/34/2/025101
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
A CMOS Compatible MEMS Pirani Vacuum Gauge with Monocrystal Silicon Heaters and Heat Sinks
Le-Min Zhang1, Bin-Bin Jiao1**, Shi-Chang Yun1, Yan-Mei Kong1, Chih-Wei Ku2, Da-Peng Chen1
1Smart Sensing R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
2Company of Jiangsu Atmems, Wuxi 214000
Cite this article:   
Le-Min Zhang, Bin-Bin Jiao, Shi-Chang Yun et al  2017 Chin. Phys. Lett. 34 025101
Download: PDF(1229KB)   PDF(mobile)(1224KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a micro-Pirani vacuum gauge using the low-resistivity monocrystal silicon as the heaters and heat sinks fabricated by the post complementary metal oxide semiconductor (CMOS) microelectromechanical system (MEMS) process. The metal interconnection of the device is fabricated by a 0.5 μm standard CMOS process on 8-inch silicon wafer. Then, a SiO$_{2}$–Si low-temperature fusion bonding is developed to bond the CMOS wafer and the MEMS wafer, with the electrical connection realized by the tungsten through silicon via process. Wafer-level AlGe eutectic bonding is adopted to package the Pirani gauge in a non-hermetic cavity to protect the gauge from being damaged or contaminated in the dicing and assembling process, and to make it suitable for actual applications. To increase the accuracy of the test and restrain negative influence of temperature drift, the Wheatstone bridge structure is introduced. The test results show that before capping, the gauge has an average sensitivity of $1.04\times10^{4}$ K$\cdot$W$^{-1}$Torr$^{-1}$ in dynamic range of 0.01–20 Torr. After capping, the sensitivity of the gauge does not decrease but increases to $1.12\times10^{4}$ K$\cdot$W$^{-1}$Torr$^{-1}$.
Received: 10 November 2016      Published: 25 January 2017
PACS:  51.30.+i (Thermodynamic properties, equations of state)  
  44.10.+i (Heat conduction)  
  73.61.Cw (Elemental semiconductors)  
  65.60.+a (Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)  
Fund: Supported by the National High Technology Research and Development Program of China under Grant No 2015AA042602.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/2/025101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I2/025101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Le-Min Zhang
Bin-Bin Jiao
Shi-Chang Yun
Yan-Mei Kong
Chih-Wei Ku
Da-Peng Chen
[1]Tang Y K et al 2015 Chin. Phys. B 24 78101
[2]Cai D et al 2016 Chin. Phys. B 25 045101
[3]Lan C H et al 2014 Chin. Phys. Lett. 31 105202
[4]Shie J S, Chou B C S and Chen Y M 1995 J. Vac. Sci. Technol. A 13 2972
[5]Stark B H et al 2003 IEEE MEMS (Kyoto Japan 19–23 January 2003) p 506
[6]Wang X F et al 2010 Sens. Actuators A 161 108
[7]Zhang F T, Tang Z, Yu J and Jin R C 2006 Sens. Actuators A 126 300
[8]Grau M, Völklein F et al 2015 J. Vac. Sci. Technol. A 33 021601
[9]Wang J F et al 2009 IEEE Trans. Ind. Electron. 56 1086
[10]Mastrangelo C H and Muller R S 1991 IEEE J. Solid-State Circuits 26 1998
[11]Mastrangelo C H and Muller R S 1991 Int. Solid-State Sens. Actuators Microsyst. Conf. (TRANSDUCERS) (San Franisisco USA 24–27 June 1991) p 245
[12]Stark B H et al 2005 IEEE MEMS (Miami USA 30 January–3 February 2005) p 295
[13]Mitchell J, Lahiji G R and Najafi K 2008 J. Microelectromech. Syst. 17 93
[14]Chae J, Stark B H and Najafi K 2005 IEEE Trans. Adv. Packag. 28 619
[15]Jiang W, Wang X and Zhang J 2010 Sens. Actuators A 163 159
[16]Topalli E S, Topalli K, Alper S E, Serin T and Akin T 2009 IEEE Sens. J. 9 263
[17]Li Q et al 2010 Sens. Actuators A 162 267
[18]Sparks D et al 2001 J. Micromech. Microeng. 11 630
Related articles from Frontiers Journals
[1] Xiu-Ming Zhang, Wei Fu. Maximum Momentum, Minimal Length and Quantum Gravity Effects of Compact Star Cores[J]. Chin. Phys. Lett., 2016, 33(01): 025101
[2] CHEN Yan-Pei, Pierre Evesque, HOU Mei-Ying. Breakdown of Energy Equipartition in Vibro-Fluidized Granular Media in Micro-Gravity[J]. Chin. Phys. Lett., 2012, 29(7): 025101
[3] CAO Jing, ZHAO A-Meng, SUN Wei-Min, ZONG Hong-Shi. An Improved Quasi-particle Model Framework for Quark-Gluon Plasma from the Path Integral Formalism[J]. Chin. Phys. Lett., 2012, 29(6): 025101
[4] GU Yun-Jun, CHEN Qi-Feng, CAI Ling-Cang, CHEN Zhi-Yun, ZHENG Jun. Temperature Measurements of Condensed Gaseous Hydrogen-Helium Mixtures under Multi-Shock Compression[J]. Chin. Phys. Lett., 2009, 26(8): 025101
[5] ZHOU Shi-Qi. Phase Behaviour of Purely Repulsive Systems: Violation of Traditional van der Waals Picture[J]. Chin. Phys. Lett., 2008, 25(6): 025101
[6] ZENG Zhao-Yi, LIU Zhong-Li, CHEN Xiang-Rong, CAI Ling-Cang, JINGFu-Qian,. Structures and Equation of State of ε-Fe under High Pressure[J]. Chin. Phys. Lett., 2008, 25(5): 025101
[7] ZHANG Ming-Jian, LIU Fu-Sheng, TIAN Chun-Ling, SUN Yan-Yun. Multi-Shock Compression of Dense Hydrogen--Helium Mixture Beyond 100GPa[J]. Chin. Phys. Lett., 2006, 23(8): 025101
[8] B. Liani, R. Benallal, Z. Bentalha. Modelling of a Multi-Temperature Plasma Composition[J]. Chin. Phys. Lett., 2005, 22(12): 025101
[9] CHEN Yu-Jun, MA Hong-Ru . Density Functional Theory Studies of Magnetically Confined Fermi Gas[J]. Chin. Phys. Lett., 2001, 18(1): 025101
Viewed
Full text


Abstract