Chin. Phys. Lett.  2016, Vol. 33 Issue (08): 088102    DOI: 10.1088/0256-307X/33/8/088102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Fabrication of GaN-Based Heterostructures with an InAlGaN/AlGaN Composite Barrier
Ru-Dai Quan, Jin-Cheng Zhang**, Jun-Shuai Xue, Yi Zhao, Jing Ning, Zhi-Yu Lin, Ya-Chao Zhang, Ze-Yang Ren, Yue Hao
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071
Cite this article:   
Ru-Dai Quan, Jin-Cheng Zhang, Jun-Shuai Xue et al  2016 Chin. Phys. Lett. 33 088102
Download: PDF(598KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract GaN-based heterostructures with an InAlGaN/AlGaN composite barrier on sapphire (0001) substrates are grown by a low-pressure metal organic chemical vapor deposition system. Compositions of the InAlGaN layer are determined by x-ray photoelectron spectroscopy, structure and crystal quality of the heterostructures are identified by high resolution x-ray diffraction, surface morphology of the samples are examined by an atomic force microscope, and Hall effect and capacitance–voltage measurements are performed at room temperature to evaluate the electrical properties of heterostructures. The Al/In ratio of the InAlGaN layer is 4.43, which indicates that the InAlGaN quaternary layer is nearly lattice-matched to the GaN channel. Capacitance–voltage results show that there is no parasitic channel formed between the InAlGaN layer and the AlGaN layer. Compared with the InAlGaN/GaN heterostructure, the electrical properties of the InAlGaN/AlGaN/GaN heterostructure are improved obviously. Influences of the thickness of the AlGaN layer on the electrical properties of the heterostructures are studied. With the optimal thickness of the AlGaN layer to be 5 nm, the 2DEG mobility, sheet density and the sheet resistance of the sample is 1889.61 cm$^{2}$/V$\cdot$s, $1.44\times10^{13}$ cm$^{-2}$ and as low as 201.1 $\Omega$/sq, respectively.
Received: 28 April 2016      Published: 31 August 2016
PACS:  81.05.Bx (Metals, semimetals, and alloys)  
  81.05.Ea (III-V semiconductors)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/8/088102       OR      https://cpl.iphy.ac.cn/Y2016/V33/I08/088102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ru-Dai Quan
Jin-Cheng Zhang
Jun-Shuai Xue
Yi Zhao
Jing Ning
Zhi-Yu Lin
Ya-Chao Zhang
Ze-Yang Ren
Yue Hao
[1]Lim T, Aidam R, Waltereit P, Henkel T, Quay R, Lozar R, Maier T, Kirste L and Ambacher O 2010 IEEE Electron Device Lett. 31 671
[2]Wang R H, Li G W, Verma J, Berardi S R, Fang T, Guo J, Hu Z Y, Laboutin O, Cao Y, Johnson W, Snider G, Fay P, Jena D and Xing H L 2011 IEEE Electron Device Lett. 32 1215
[3]Lu H M, Chen G X and Jian S S 2009 Chin. Phys. Lett. 26 087803
[4]Husnain G, Chen T X, Tao F and Yao S D 2010 Chin. Phys. B 19 087205
[5]Quan R D, Zhang J C, Xu S R, Xue J S, Zhao Y, Ning J, Lin Z Y, Ren Z Y and Hao Y 2016 Chin. Phys. Lett. 33 048101
[6]Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernardini F, Fiorentini V, Tilak V, Schaff B and Eastman L F 2002 J. Phys.: Condens. Matter 14 3399
[7]Choi S, Kim H J, Lochner Z, Zhang Y, Lee Y C, Shen S C, Ryou J H and Dupuis R D 2010 Appl. Phys. Lett. 96 243506
[8]Reuters B, Wille A, Ketteniss N, Hahn H, Hollander B, Heuken M, Kalisch H and Vescan A 2013 J. Electron. Mater. 42 826
[9]Nakazawa S, Ueda T, Inoue K, Tanaka T, Ishikawa H and Egawa T 2005 IEEE Trans. Electron Devices 52 2124
[10]Lim T, Aidam R, Kirste L, Waltereit P, Quay R, Müller S and Ambacher O 2010 Appl. Phys. Lett. 96 252108
[11]Xue J S, Hao Y, Zhang J C,. Zhou X W, Liu Z Y, Ma J C and Lin Z Y 2011 Appl. Phys. Lett. 98 113504
[12]Xue J S, Zhang J C, Hou Y W, Zhou H, Zhang J F and Hao Y 2012 Appl. Phys. Lett. 100 013507
[13]Choi S, Wu F, Shivaraman R, Young E C and Speck J S 2012 Appl. Phys. Lett. 100 232102
[14]Takayama T, Yuri M, Itoh K, Baba T and Harris J S 2001 J. Cryst. Growth 222 29
[15]Yasan A, McClintock R, Mayes K, Darvish S R, Zhang H, Kung P, Razeghi M, Lee S K and Han J Y 2002 Appl. Phys. Lett. 81 2151
[16]Shang J Z, Zhang B P, Mao M H, Cai L E, Zhang J Y, Fang Z L, Liu B L, Yu J Z, Wang Q M, Kusakabe K and Ohkawa K 2009 J. Cryst. Growth 311 474
[17]Li Y, Zhang J F, Wan W, Zhang Y C, Nie Y H, Zhang J C and Hao Y 2015 Physica E 67 77
[18]Liu Y, Egawa T, Ishikawa H and Jimbo T 2003 J. Cryst. Growth 259 245
[19]Wu J J, Li D B, Lu Y, Han X X, Li J M, Wei H Y, Kang T T, Wang X H, Liu X L, Zhu Q S and Wang Z G 2004 J. Cryst. Growth 273 79
[20]Goto O, Tomiya S, Hohshina Y, Tanaka T, Ohta M, Ohizumi Y et al 2007 Proc. SPIE 6485 64850Z
[21]Tanaka M, Nakahata S, Sogabe K, Nakata H and Tabioka M 1997 Jpn. J. Appl. Phys. 36 L1062
[22]Paszkowicz W 1999 Powder Diffr. 14 258
[23]Shang J Z, Zhang B P, Wu C M, Cai L E, Zhang J Y, Yu J Z and Wang M 2008 Appl. Surf. Sci. 255 3350
[24]Fischer A, Kiihne H and Richter H 1994 Phys. Rev. Lett. 73 2712
Related articles from Frontiers Journals
[1] Jia-Lin Ma, Hai-Long Wang, Xing-Min Zhang, Shuai Yan, Wen-Sheng Yan, Jian-Hua Zhao. Epitaxial Growth and Magnetic Properties of NiMnAs Films on GaAs Substrates[J]. Chin. Phys. Lett., 2019, 36(1): 088102
[2] Ying Yu, Chao Li, Hong-Hao Ma, Mei-Lan Qi, Sheng-Nian Luo. Deformation and Spallation of Explosive Welded Steels under Gas Gun Shock Loading[J]. Chin. Phys. Lett., 2018, 35(1): 088102
[3] Yu-Cong Liu, Jia-Dong Chen, Hui-Yong Deng, Gu-Jin Hu, Xiao-Shuang Chen, Ning Dai. High-Quality Bi$_{2}$Te$_{3}$ Single Crystalline Films on Flexible Substrates and Bendable Photodetectors[J]. Chin. Phys. Lett., 2016, 33(10): 088102
[4] Ru-Dai Quan, Jin-Cheng Zhang, Ya-Chao Zhang, Wei-Hang Zhang, Ze-Yang Ren, Yue Hao. Fabrication of InAlGaN/GaN High Electron Mobility Transistors on Sapphire Substrates by Pulsed Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(10): 088102
[5] Ru-Dai Quan, Jin-Cheng Zhang, Sheng-Rui Xu, Jun-Shuai Xue, Yi Zhao, Jing Ning, Zhi-Yu Lin, Ze-Yang Ren, Yue Hao. Growth of InAlGaN Quaternary Alloys by Pulsed Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(04): 088102
[6] Shi-Hua Fu, Yu-Long Cai, Su-Li Yang, Qing-Chuan Zhang, Xiao-Ping Wu. The Mechanism of Critical Strain of Serrated Yielding in Strain Rate Domain[J]. Chin. Phys. Lett., 2016, 33(02): 088102
[7] ZHANG Pin-Liang, GONG Zi-Zheng, JI Guang-Fu, WANG Qing-Song, SONG Zhen-Fei, CAO Yan, WANG Xiang. Shock Compression of the New 47Zr45Ti5Al3V Alloys up to 200 GPa[J]. Chin. Phys. Lett., 2013, 30(6): 088102
[8] LIU Dong-Huan, SHANG Xin-Chun. The Physical-Mechanism Based High-Temperature Thermal Contact Conductance Model with Experimental Verification[J]. Chin. Phys. Lett., 2013, 30(3): 088102
[9] JIANG Hong-Xiang, and ZHAO Jiu-Zhou. Effect Mechanism of a Direct Current on the Solidification of Immiscible Alloys[J]. Chin. Phys. Lett., 2012, 29(8): 088102
[10] YANG Tao, CHEN Zheng, ZHANG Jing, DONG Wei-Ping, WU Lin. Effect of Grain Boundary on Spinodal Decomposition Using the Phase Field Crystal Method[J]. Chin. Phys. Lett., 2012, 29(7): 088102
[11] YAN Na, DAI Fu-Ping, WANG Wei-Li, WEI Bing-Bo** . Crystal Growth in Al72.9Ge27.1 Alloy Melt under Acoustic Levitation Conditions[J]. Chin. Phys. Lett., 2011, 28(7): 088102
[12] ZHAI Feng-Xiao, ZUO Fang-Yuan, HUANG Huan, WANG Yang, LAI Tian-Shu, WU Yi-Qun, GAN Fu-Xi. Optical Switch Formation in Antimony Super-Resolution Mask Layers Induced by Picosecond Laser Pulses[J]. Chin. Phys. Lett., 2010, 27(1): 088102
[13] ZHU Zun-Lue, FU Hong-Zhi, SUN Jin-Feng, LIU Yu-Fang, SHI De-Heng, XU Guo-Liang. First-Principles Calculations of Elastic and Thermal Properties of Molybdenum Disilicide[J]. Chin. Phys. Lett., 2009, 26(8): 088102
[14] ZHANG Li, HE Qing, JIANG Wei-Long, LI Chang-Jian, SUN Yun. Cu(In, Ga)Se2 Thin Films on Flexible Polyimide Sheet: Structural and Electrical Properties versus Composition[J]. Chin. Phys. Lett., 2009, 26(2): 088102
[15] FAN Zhen-Jun, PAN Feng, ZHANG Dian-Lin. Growth of High-Quality Decagonal Al-Cu-Co Quasicrystals from Ternary Melt[J]. Chin. Phys. Lett., 2009, 26(2): 088102
Viewed
Full text


Abstract