CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Fabrication of GaN-Based Heterostructures with an InAlGaN/AlGaN Composite Barrier |
Ru-Dai Quan, Jin-Cheng Zhang**, Jun-Shuai Xue, Yi Zhao, Jing Ning, Zhi-Yu Lin, Ya-Chao Zhang, Ze-Yang Ren, Yue Hao |
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071
|
|
Cite this article: |
Ru-Dai Quan, Jin-Cheng Zhang, Jun-Shuai Xue et al 2016 Chin. Phys. Lett. 33 088102 |
|
|
Abstract GaN-based heterostructures with an InAlGaN/AlGaN composite barrier on sapphire (0001) substrates are grown by a low-pressure metal organic chemical vapor deposition system. Compositions of the InAlGaN layer are determined by x-ray photoelectron spectroscopy, structure and crystal quality of the heterostructures are identified by high resolution x-ray diffraction, surface morphology of the samples are examined by an atomic force microscope, and Hall effect and capacitance–voltage measurements are performed at room temperature to evaluate the electrical properties of heterostructures. The Al/In ratio of the InAlGaN layer is 4.43, which indicates that the InAlGaN quaternary layer is nearly lattice-matched to the GaN channel. Capacitance–voltage results show that there is no parasitic channel formed between the InAlGaN layer and the AlGaN layer. Compared with the InAlGaN/GaN heterostructure, the electrical properties of the InAlGaN/AlGaN/GaN heterostructure are improved obviously. Influences of the thickness of the AlGaN layer on the electrical properties of the heterostructures are studied. With the optimal thickness of the AlGaN layer to be 5 nm, the 2DEG mobility, sheet density and the sheet resistance of the sample is 1889.61 cm$^{2}$/V$\cdot$s, $1.44\times10^{13}$ cm$^{-2}$ and as low as 201.1 $\Omega$/sq, respectively.
|
|
Received: 28 April 2016
Published: 31 August 2016
|
|
PACS: |
81.05.Bx
|
(Metals, semimetals, and alloys)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
81.15.Kk
|
(Vapor phase epitaxy; growth from vapor phase)
|
|
|
|
|
[1] | Lim T, Aidam R, Waltereit P, Henkel T, Quay R, Lozar R, Maier T, Kirste L and Ambacher O 2010 IEEE Electron Device Lett. 31 671 | [2] | Wang R H, Li G W, Verma J, Berardi S R, Fang T, Guo J, Hu Z Y, Laboutin O, Cao Y, Johnson W, Snider G, Fay P, Jena D and Xing H L 2011 IEEE Electron Device Lett. 32 1215 | [3] | Lu H M, Chen G X and Jian S S 2009 Chin. Phys. Lett. 26 087803 | [4] | Husnain G, Chen T X, Tao F and Yao S D 2010 Chin. Phys. B 19 087205 | [5] | Quan R D, Zhang J C, Xu S R, Xue J S, Zhao Y, Ning J, Lin Z Y, Ren Z Y and Hao Y 2016 Chin. Phys. Lett. 33 048101 | [6] | Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernardini F, Fiorentini V, Tilak V, Schaff B and Eastman L F 2002 J. Phys.: Condens. Matter 14 3399 | [7] | Choi S, Kim H J, Lochner Z, Zhang Y, Lee Y C, Shen S C, Ryou J H and Dupuis R D 2010 Appl. Phys. Lett. 96 243506 | [8] | Reuters B, Wille A, Ketteniss N, Hahn H, Hollander B, Heuken M, Kalisch H and Vescan A 2013 J. Electron. Mater. 42 826 | [9] | Nakazawa S, Ueda T, Inoue K, Tanaka T, Ishikawa H and Egawa T 2005 IEEE Trans. Electron Devices 52 2124 | [10] | Lim T, Aidam R, Kirste L, Waltereit P, Quay R, Müller S and Ambacher O 2010 Appl. Phys. Lett. 96 252108 | [11] | Xue J S, Hao Y, Zhang J C,. Zhou X W, Liu Z Y, Ma J C and Lin Z Y 2011 Appl. Phys. Lett. 98 113504 | [12] | Xue J S, Zhang J C, Hou Y W, Zhou H, Zhang J F and Hao Y 2012 Appl. Phys. Lett. 100 013507 | [13] | Choi S, Wu F, Shivaraman R, Young E C and Speck J S 2012 Appl. Phys. Lett. 100 232102 | [14] | Takayama T, Yuri M, Itoh K, Baba T and Harris J S 2001 J. Cryst. Growth 222 29 | [15] | Yasan A, McClintock R, Mayes K, Darvish S R, Zhang H, Kung P, Razeghi M, Lee S K and Han J Y 2002 Appl. Phys. Lett. 81 2151 | [16] | Shang J Z, Zhang B P, Mao M H, Cai L E, Zhang J Y, Fang Z L, Liu B L, Yu J Z, Wang Q M, Kusakabe K and Ohkawa K 2009 J. Cryst. Growth 311 474 | [17] | Li Y, Zhang J F, Wan W, Zhang Y C, Nie Y H, Zhang J C and Hao Y 2015 Physica E 67 77 | [18] | Liu Y, Egawa T, Ishikawa H and Jimbo T 2003 J. Cryst. Growth 259 245 | [19] | Wu J J, Li D B, Lu Y, Han X X, Li J M, Wei H Y, Kang T T, Wang X H, Liu X L, Zhu Q S and Wang Z G 2004 J. Cryst. Growth 273 79 | [20] | Goto O, Tomiya S, Hohshina Y, Tanaka T, Ohta M, Ohizumi Y et al 2007 Proc. SPIE 6485 64850Z | [21] | Tanaka M, Nakahata S, Sogabe K, Nakata H and Tabioka M 1997 Jpn. J. Appl. Phys. 36 L1062 | [22] | Paszkowicz W 1999 Powder Diffr. 14 258 | [23] | Shang J Z, Zhang B P, Wu C M, Cai L E, Zhang J Y, Yu J Z and Wang M 2008 Appl. Surf. Sci. 255 3350 | [24] | Fischer A, Kiihne H and Richter H 1994 Phys. Rev. Lett. 73 2712 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|