Chin. Phys. Lett.  2016, Vol. 33 Issue (08): 087303    DOI: 10.1088/0256-307X/33/8/087303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Energy Levels of Coupled Plasmonic Cavities
Chuan-Pu Liu1, Xin-Li Zhu1, Jia-Sen Zhang1,2**, Jun Xu1, Yamin Leprince-Wang3, Da-Peng Yu1,2**
1State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871
2Collaborative Innovation Center of Quantum Matter, Beijing 100871
3Université Paris-Est, Laboratoire ESYCOM, UPEM, Marne-la-Vallée 77454, France
Cite this article:   
Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang et al  2016 Chin. Phys. Lett. 33 087303
Download: PDF(916KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate the hybridization of the plasmonic modes in directly coupled whispering gallery cavities fabricated on silver films and present the mode patterns and energy levels using cathodoluminescence spectroscopy. Although the energy of the most antisymmetrically coupled modes is higher than that of the corresponding symmetrically coupled ones, the contrary cases happen for small quantum number modes. We attribute the phenomenon to the different surface plasmon polariton paths between the symmetrically and antisymmetrically coupled modes. These results provide an understanding of the resonant properties in coupled plasmonic cavities, which have potential applications in nanophotonic devices.
Received: 06 June 2016      Published: 31 August 2016
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.79.-e (Optical elements, devices, and systems)  
  42.82.-m (Integrated optics)  
  42.82.Gw (Other integrated-optical elements and systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/8/087303       OR      https://cpl.iphy.ac.cn/Y2016/V33/I08/087303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chuan-Pu Liu
Xin-Li Zhu
Jia-Sen Zhang
Jun Xu
Yamin Leprince-Wang
Da-Peng Yu
[1]Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer-Verlag) p 4
[2]Maier S A 2007 Plasmonics: Fundamentals and Applications (Berlin: Springer-Verlag)
[3]Schuller J A, Barnard E S, Cai W et al 2010 Nat. Mater. 9 193
[4]Linic S, Christopher P and Ingram D B 2011 Nat. Mater. 10 911
[5]Berini P and De Leon I 2011 Nat. Photon. 6 16
[6]Hofmann C E, Vesseur E J R, Sweatlock L A et al 2007 Nano Lett. 7 3612
[7]Miyazaki H T and Kurokawa Y 2006 Phys. Rev. Lett. 96 097401
[8]Kuttge M, Garciía de Abajo F J and Polman A 2010 Nano Lett. 10 1537
[9]Hao F, Sonnefraud Y, Dorpe P V et al 2008 Nano Lett. 8 3983
[10]Kuttge M, Vesseur E and Polman A 2009 Appl. Phys. Lett. 94 183104
[11]Vesseur E J R and Polman A 2011 Nano Lett. 11 5524
[12]Vesseur E J R and Polman A 2011 Appl. Phys. Lett. 99 231112
[13]Zhu X L, Ma Y, Zhang J S et al 2010 Phys. Rev. Lett. 105 127402
[14]Zhu X, Zhang Y, Zhang J et al 2010 Adv. Mater. 22 4345
[15]Zhu X, Zhang J, Xu J et al 2011 Nano Lett. 11 1117
[16]Zhu X L, Zhang J S, Xu J et al 2011 ACS Nano 5 6546
[17]Russell K J, Liu T L, Cui S et al 2012 Nat. Photon. 6 459
[18]Elvira D, Braive R, Beaudoin G et al 2013 Appl. Phys. Lett. 103 061113
[19]Choy J T, Bulu I, Hausmann B J M et al 2013 Appl. Phys. Lett. 103 161101
[20]Jiang J J, Xie Y B, Liu Z Y et al 2014 Opt. Lett. 39 2378
[21]Heeg S, Oikonomou A, Fernandez-Garcia R et al 2014 Nano Lett. 14 1762
[22]Im H, Bantz K C, Lee S H et al 2013 Adv. Mater. 25 2678
[23]Chou S Y and Ding W 2013 Opt. Express 21 A60
[24]Raza S, Stenger N, Pors A et al 2014 Nat. Commun. 5 4125
[25]Busson M P and Bidault S 2014 Nano Lett. 14 284
[26]Dyer G C, Aizin G R, Preu S et al 2012 Phys. Rev. Lett. 109 126803
[27]Chanda D, Shigeta K, Truong T et al 2011 Nat. Commun. 2 479
[28]Kwon S H, Kang J H, Seassal C et al 2010 Nano Lett. 10 3679
[29]Ameling R and Giessen H 2010 Nano Lett. 10 4394
[30]Seo M K, Kwon S H, Ee H S et al 2009 Nano Lett. 9 4078
[31]Weeber J C, Bouhelier A, Colas des F G et al 2007 Nano Lett. 7 1352
[32]Prodan E, Radloff C, Halas N et al 2003 Science 302 419
[33]Lassiter J B, Aizpurua J, Hernandez L I et al 2008 Nano Lett. 8 1212
[34]Nordlander P, Oubre C, Prodan E et al 2004 Nano Lett. 4 899
[35]Romero I, Aizpurua J, Bryant G W et al 2006 Opt. Express 14 9988
[36]Brown L V, Sobhani H, Lassiter J B et al 2010 ACS Nano 4 819
[37]Mirin N A, Bao K and Nordlander P 2009 J. Phys. Chem. A 113 4028
[38]Liu N, Mukherjee S, Bao K et al 2012 Nano Lett. 12 364
[39]Lassiter J B, Sobhani H, Knight M W et al 2012 Nano Lett. 12 1058
[40]Luk'yanchuk B, Zheludev N I, Maier S A et al 2010 Nat. Mater. 9 707
[41]Frimmer M, Coenen T and Koenderink A F 2012 Phys. Rev. Lett. 108 077404
[42]Palik E D 1985 Handbook of Optical Constants of Solids (Orlando: Academic Press)
[43]Nobis T and Grundmann M 2005 Phys. Rev. A 72 063806
[44]Wiersig J 2003 Phys. Rev. A 67 023807
[45]Christoffersen R E 1971 J. Am. Chem. Soc. 93 4104
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 087303
[2] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 087303
[3] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, and Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau[J]. Chin. Phys. Lett., 2022, 39(9): 087303
[4] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 087303
[5] Gongzheng Chen, Jin Lan, Tai Min, and Jiang Xiao. Narrow Waveguide Based on Ferroelectric Domain Wall[J]. Chin. Phys. Lett., 2021, 38(8): 087303
[6] Yun-Fei Zou and Li Yu. Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers[J]. Chin. Phys. Lett., 2021, 38(2): 087303
[7] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 087303
[8] Ping Jiang, Chao Li, Yuan-Yuan Chen, Gang Song, Yi-Lin Wang, Li Yu. Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity[J]. Chin. Phys. Lett., 2019, 36(10): 087303
[9] Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 087303
[10] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 087303
[11] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Erratum: Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance [Chin. Phys. Lett. 34(2017)057501][J]. Chin. Phys. Lett., 2017, 34(8): 087303
[12] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance[J]. Chin. Phys. Lett., 2017, 34(5): 087303
[13] Xin Sun. Generalized Hellmann–Feynman Theorem and Its Applications[J]. Chin. Phys. Lett., 2016, 33(12): 087303
[14] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 087303
[15] CAI Yong-Jing, LI Ming, XIONG Xiao, YU Le, REN Xi-Feng, GUO Guo-Ping, GUO Guang-Can. Waveguide Mode Splitter Based on Multi-mode Dielectric-Loaded Surface Plasmon Polariton Waveguide[J]. Chin. Phys. Lett., 2015, 32(10): 087303
Viewed
Full text


Abstract