CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Strong Coupling of a Meta-Diatom to a Plasmonic Nanocavity |
CHEN San1**, LU Hong-Yan1, LIU Jian-Qiang2, ZHU Yong-Yuan3 |
1School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 2School of Science, Jiujiang University, Jiujiang 332005 3National Laboratory of Solid State Microstructures, and Department of Physics, Nanjing University, Nanjing 210093
|
|
Cite this article: |
CHEN San, LU Hong-Yan, LIU Jian-Qiang et al 2013 Chin. Phys. Lett. 30 087301 |
|
|
Abstract A strong coupling meta-diatom-plasmonic nanocavity is proposed and numerically investigated. When the meta-diatomic sizes are gradually increased, the meta-diatomic electric dipole and quadrupole resonances could strongly couple to those of the nanocavity. The characteristic anticrossing behaviors of three hybrid modes manifest the occurrence of the strong coupling from the transmission spectra, with Rabi-type splittings at about 40.8 meV and 128.4 meV for dipole interaction, and 11.8 meV and 72.7 meV for quadrupole interaction, respectively. We also present the coupling strength dependence on meta-atomic positions, in which one meta-atomic position is fixed and the other is changed. The average Rabi-type splittings of three polariton modes are used to evaluate the coupling strength of the meta-atomic position dependence. The corresponding Rabi-type oscillation in the time domain is also presented, which is obviously different from the one of a single meta-atom strongly coupling to a nanocavity.
|
|
Received: 06 May 2013
Published: 21 November 2013
|
|
PACS: |
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
42.79.Fm
|
(Reflectors, beam splitters, and deflectors)
|
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
|
|
|
[1] Gong Y Y and Vu?ovi? J 2007 Appl. Phys. Lett. 90 033113 [2] Cade N I, Ritman-Meeret T and Richards D 2009 Phys. Rev. B 79 241404(R) [3] Sugawara Y, Kelf T A, Baumberg J J, Abdelsalam M E and Bartlett P N 2006 Phys. Rev. Lett. 97 266808 [4] Bek A, Jansen R, Ringler M, Mayilo S, Klar T A and Feldmann J 2008 Nano Lett. 8 485 [5] Biesso A, Qian W, Huang X H and El-Sayed M A 2009 J. Am. Chem. Soc. 131 2442 [6] Bellesa J, Bonnand C and Plenet J C 2004 Phys. Rev. Lett. 93 036404 [7] Dintinger, Klein S, Bustos F, Barnes W L and Ebbesen T W 2005 Phys. Rev. B 71 035424 [8] Salomon A, Genet C and Ebbesen T W 2009 Angew Chem. Int. Ed. 48 8748 [9] Berrier A, Cools R, Arnold C, Offermans P, Crego-Calama M, Brongersma S H and Gómez-Rivas J 2011 ACS Nano 5 6226 [10] Gomez D E, Vernon K C, Mulvaney P and Davis T J 2010 Nano Lett. 10 274 [11] Vasa P, Pomraenke R, Schwieger S, Mazur Y I, Kunets V, Srinivasan P, Johnson E, Kihm J E, Kim D S, Runge E, Salamo G and Lienau C 2008 Phys. Rev. Lett. 101 116801 [12] Wiederrecht G P, Hall J E and Bouhelier A 2007 Phys. Rev. Lett. 98 083001 [13] Li M Z, An Z H, Zhou L, Mao F L and Wang H L 2011 Chin. Phys. Lett. 28 075206 [14] Ameling R and Giessen H 2010 Nano Lett. 10 4394 [15] Ameling R and Giessen H 2013 Laser Photon. Rev. 7 141 [16] Wang B and Wang G P 2005 Appl. Phys. Lett. 87 013107 [17] Hosseini A and Massoud Y 2006 Opt. Express 14 11318 [18] Liu J Q, Wang L L, He M D, Huang W Q, Wang D Y, Zou B S and Wen S C 2008 Opt. Express 16 4888 [19] Chen S, Liu J Q, Lu H Y, Wang Q J and Zhu Y Y 2012 AIP Adv. 2 032186 [20] Dionne J A, Sweatlock L A and Atwater H A 2006 Phys. Rev. B 73 35407 [21] Han Z, Van V, Herman W N and Ho P T 2009 Opt. Express 17 12678 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|