Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 087301    DOI: 10.1088/0256-307X/30/8/087301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Strong Coupling of a Meta-Diatom to a Plasmonic Nanocavity
CHEN San1**, LU Hong-Yan1, LIU Jian-Qiang2, ZHU Yong-Yuan3
1School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000
2School of Science, Jiujiang University, Jiujiang 332005
3National Laboratory of Solid State Microstructures, and Department of Physics, Nanjing University, Nanjing 210093
Cite this article:   
CHEN San, LU Hong-Yan, LIU Jian-Qiang et al  2013 Chin. Phys. Lett. 30 087301
Download: PDF(839KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A strong coupling meta-diatom-plasmonic nanocavity is proposed and numerically investigated. When the meta-diatomic sizes are gradually increased, the meta-diatomic electric dipole and quadrupole resonances could strongly couple to those of the nanocavity. The characteristic anticrossing behaviors of three hybrid modes manifest the occurrence of the strong coupling from the transmission spectra, with Rabi-type splittings at about 40.8 meV and 128.4 meV for dipole interaction, and 11.8 meV and 72.7 meV for quadrupole interaction, respectively. We also present the coupling strength dependence on meta-atomic positions, in which one meta-atomic position is fixed and the other is changed. The average Rabi-type splittings of three polariton modes are used to evaluate the coupling strength of the meta-atomic position dependence. The corresponding Rabi-type oscillation in the time domain is also presented, which is obviously different from the one of a single meta-atom strongly coupling to a nanocavity.
Received: 06 May 2013      Published: 21 November 2013
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
  42.79.Gn (Optical waveguides and couplers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/087301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/087301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN San
LU Hong-Yan
LIU Jian-Qiang
ZHU Yong-Yuan
[1] Gong Y Y and Vu?ovi? J 2007 Appl. Phys. Lett. 90 033113
[2] Cade N I, Ritman-Meeret T and Richards D 2009 Phys. Rev. B 79 241404(R)
[3] Sugawara Y, Kelf T A, Baumberg J J, Abdelsalam M E and Bartlett P N 2006 Phys. Rev. Lett. 97 266808
[4] Bek A, Jansen R, Ringler M, Mayilo S, Klar T A and Feldmann J 2008 Nano Lett. 8 485
[5] Biesso A, Qian W, Huang X H and El-Sayed M A 2009 J. Am. Chem. Soc. 131 2442
[6] Bellesa J, Bonnand C and Plenet J C 2004 Phys. Rev. Lett. 93 036404
[7] Dintinger, Klein S, Bustos F, Barnes W L and Ebbesen T W 2005 Phys. Rev. B 71 035424
[8] Salomon A, Genet C and Ebbesen T W 2009 Angew Chem. Int. Ed. 48 8748
[9] Berrier A, Cools R, Arnold C, Offermans P, Crego-Calama M, Brongersma S H and Gómez-Rivas J 2011 ACS Nano 5 6226
[10] Gomez D E, Vernon K C, Mulvaney P and Davis T J 2010 Nano Lett. 10 274
[11] Vasa P, Pomraenke R, Schwieger S, Mazur Y I, Kunets V, Srinivasan P, Johnson E, Kihm J E, Kim D S, Runge E, Salamo G and Lienau C 2008 Phys. Rev. Lett. 101 116801
[12] Wiederrecht G P, Hall J E and Bouhelier A 2007 Phys. Rev. Lett. 98 083001
[13] Li M Z, An Z H, Zhou L, Mao F L and Wang H L 2011 Chin. Phys. Lett. 28 075206
[14] Ameling R and Giessen H 2010 Nano Lett. 10 4394
[15] Ameling R and Giessen H 2013 Laser Photon. Rev. 7 141
[16] Wang B and Wang G P 2005 Appl. Phys. Lett. 87 013107
[17] Hosseini A and Massoud Y 2006 Opt. Express 14 11318
[18] Liu J Q, Wang L L, He M D, Huang W Q, Wang D Y, Zou B S and Wen S C 2008 Opt. Express 16 4888
[19] Chen S, Liu J Q, Lu H Y, Wang Q J and Zhu Y Y 2012 AIP Adv. 2 032186
[20] Dionne J A, Sweatlock L A and Atwater H A 2006 Phys. Rev. B 73 35407
[21] Han Z, Van V, Herman W N and Ho P T 2009 Opt. Express 17 12678
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 087301
[2] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 087301
[3] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, and Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau[J]. Chin. Phys. Lett., 2022, 39(9): 087301
[4] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 087301
[5] Gongzheng Chen, Jin Lan, Tai Min, and Jiang Xiao. Narrow Waveguide Based on Ferroelectric Domain Wall[J]. Chin. Phys. Lett., 2021, 38(8): 087301
[6] Yun-Fei Zou and Li Yu. Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers[J]. Chin. Phys. Lett., 2021, 38(2): 087301
[7] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 087301
[8] Ping Jiang, Chao Li, Yuan-Yuan Chen, Gang Song, Yi-Lin Wang, Li Yu. Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity[J]. Chin. Phys. Lett., 2019, 36(10): 087301
[9] Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 087301
[10] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 087301
[11] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Erratum: Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance [Chin. Phys. Lett. 34(2017)057501][J]. Chin. Phys. Lett., 2017, 34(8): 087301
[12] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance[J]. Chin. Phys. Lett., 2017, 34(5): 087301
[13] Xin Sun. Generalized Hellmann–Feynman Theorem and Its Applications[J]. Chin. Phys. Lett., 2016, 33(12): 087301
[14] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 087301
[15] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 087301
Viewed
Full text


Abstract