NUCLEAR PHYSICS |
|
|
|
|
The Role of Neck Evolution in the Synthesis of Superheavy Element 112 |
ZHU Min1**, FU Jun-Li1,2, QU Zhen1, LIU Zu-Hua3, WANG Wen-Zhong1 |
1School of Science, Minzu University of China, Beijing 100081 2Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 3China Institute of Atomic Energy, Beijing 102413
|
|
Cite this article: |
ZHU Min, FU Jun-Li, QU Zhen et al 2013 Chin. Phys. Lett. 30 082401 |
|
|
Abstract The coupled and uncoupled Langevin equations in two-dimensional collective space are used to study the neck dynamics of the mass asymmetric system 48Ca+238U at the above barrier energy. The results show that the coupling between the neck and radial degrees of freedom delays the transition from dinucleus to mononucleus, and correspondingly increases the lifetime of the dinucleus system. The lifetime of the dinucleus for the asymmetric system48Ca+238U is about 11.6 and 13.0×10?22 s, obtained with uncoupled and coupled Langevin equations. We calculate the evaporation residue (ER) cross sections for the 3n and 4n evaporation channels in the 48Ca+238U reaction leading to the formation of 283112 and 282112 isotopes in three different approaches, i.e., coupled, uncoupled and frozen approximation, and compare them with the experimental data. It is found that the results of the uncoupled and frozen approximation are in close similarity, while the coupling between the radial and neck degrees of freedom reduces the ER cross section by about 30%, compared with the case of frozen approximation.
|
|
Received: 25 December 2012
Published: 21 November 2013
|
|
PACS: |
24.10.-i
|
(Nuclear reaction models and methods)
|
|
25.70.Jj
|
(Fusion and fusion-fission reactions)
|
|
|
|
|
[1] Cap T, Siwek-Wilczyńska K and Wilczyński J 2011 Phys. Rev. C 83 054602 [2] Boilley D, Lü H, Shen C W, Abe Y and Giraud B G 2011 Phys. Rev. C 84 054608 [3] Zhao K, Li Z X, Wu X Z and Zhao Z X 2009 Phys. Rev. C 79 024614 [4] Liang Y J, Zhu M, Liu Z H and Wang W Z 2012 Phys. Rev. C 86 037602 [5] Liang Y J, Zhu M, Liu Z H and Wang W Z 2012 Eur. Phys. J. A 48 133 [6] Liang Y J, Zhu M, Liu Z H and Wang W Z 2013 Phys. Rev. C 87 047602 [7] ?wi?tecki W J, Siwek-Wilczyńska K and Wilczyński J 2005 Phys. Rev. C 71 014602 [8] Krappe H J, Nix J R and Sierk A J 1979 Phys. Rev. Lett. 42 215 Krappe H J, Nix J R and Sierk A J 1979 Phys. Rev. C 20 992 [9] Sierk A J 1986 Phys. Rev. C 33 2039 [10] Liu Z H and Bao J D 2011 Phys. Rev. C 83 044613 [11] Blocki J, Bonch Y, Nix J R, Randrup J, Robel M, Sierk A J and Swiatecki W J 1978 Ann. Phys. 113 330 [12] Randrup J and Swiatecki W J 1980 Ann. Phys. 125 193 [13] Dhara A K, Krishan K, Bhattacharya C and Bhattacharya S 1998 Phys. Rev. C 57 2453 [14] Mirfathi S M and Pahlavani M R 2008 Phys. Rev. C 78 064612 [15] Nix J R 1969 Nucl. Phys. A 130 241 [16] Davies K T R, Sierk A J and Nix J R 1976 Phys. Rev. C 13 2385 [17] Liu Z H and Bao J D 2010 Phys. Rev. C 81 044606 [18] Swiatecki W J 1981 Phys. Scr. 24 113 [19] Zagrebaev V I 2001 Phys. Rev. C 64 034606 [20] Zagrebaev V I, Aritomo Y, Itkis M G, Oganessian Yu Ts and Ohta M 2001 Phys. Rev. C 65 014607 [21] ?wi?tecki W J, Siwek-Wilczyńska K and Wilczyński J 2003 Acta Phys. Pol. B 34 2049 [22] Vandenbosch R and Huizenga J R 1973 Nuclear Fission (Academic Press, New York), p.233 [23] Siewek-Wilczyňska K and Skwira I 2005 Phys. Rev. C 72 034605 [24] Liu Z H and Bao J D 2009 Phys. Rev. C 80 034601 [25] Moller P, Nix J R, Myers W D and Swiatecki W J 1995 At. Data Nucl. Data Tables 59 185 [26] Oganessian Yu 2007 J. Phys. G: Nucl. Part. Phys. 34 R165 [27] Ignatyuk A V, Smirenkin G N and Tishin A S 1975 Yad. Fiz. 21 485 [1975 Sov. J. Nucl. Phys. 29 255] [28] Reisdorf W 1981 Z. Phys. A 300 227 [29] Oganessian Yu Ts et al 2004 Phys. Rev. C 70 064609 [30] Wang N, Zhao E G, Scheid W and Zhou S G 2012 Phys. Rev. C 85 041601(R) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|