Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 080203    DOI: 10.1088/0256-307X/30/8/080203
GENERAL |
Application of the St?rmer–Verlet-Like Symplectic Method to the Wave Equation*
QIU Yu-Fen, WU Xin**
School of Science, Nanchang University, Nanchang 330031
Cite this article:   
QIU Yu-Fen, WU Xin 2013 Chin. Phys. Lett. 30 080203
Download: PDF(508KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A fourth-order three-stage symplectic integrator similar to the second-order St?rmer–Verlet method has been proposed and used before [Chin. Phys. Lett. 28 (2011) 070201; Eur. Phys. J. Plus 126 (2011) 73]. Continuing the work initiated in the publications, we investigate the numerical performance of the integrator applied to a one-dimensional wave equation, which is expressed as a discrete Hamiltonian system with a fourth-order central difference approximation to a second-order partial derivative with respect to the space variable. It is shown that the St?rmer–Verlet-like scheme has a larger numerical stable zone than either the St?rmer–Verlet method or the fourth-order Forest–Ruth symplectic algorithm, and its numerical errors in the discrete Hamiltonian and numerical solution are also smaller.
Received: 08 May 2013      Published: 21 November 2013
PACS:  02.70.-c (Computational techniques; simulations)  
  02.60.-x (Numerical approximation and analysis)  
  45.10.-b (Computational methods in classical mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/080203       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/080203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QIU Yu-Fen
WU Xin
[1] Hairer E, Lubich C and Wanner G 1999 Geometric Numerical Integration (Berlin: Springer)
[2] Feng K and Qin M Z 2009 Symplectic Geometric Algorithms for Hamiltonian Systems (Hangzhou: Zhejiang Science and Technology Publishing House)
[3] Ma D Z, Wu X and Zhong S Y 2008 Astrophys. J. 687 1294
[4] Zhong S Y and Wu X 2010 Phys. Rev. D 81 104037
[5] Mei L J, Wu X and Liu F Y 2012 Chin. Phys. Lett. 29 050201
[6] Zhong S Y, Wu X, Liu S Q and Deng X F 2010 Phys. Rev. D 82 124040
[7] Zhong S Y and Wu X 2011 Acta Phys. Sin. 60 090402 (in Chinese)
[8] Mei L, Wu X and Liu F 2013 Eur. Phys. J. C 73 2413
[9] Yoshida H 1990 Phys. Lett. A 150 262
[10] Forest E and Ruth R D 1990 Physica D 43 105
[11] Mei L J, Wu X and Liu F Y 2013 Eur. Phys. J. C 73 2413
[12] Ruth R D 1983 IEEE Trans. Nucl. Sci. 30 2669
[13] Chin S A 2007 Phys. Rev. E 75 036701
[14] Xu J and Wu X 2010 Res. Astron. Astrophys. 10 173
[15] Sun W, Wu X and Huang G Q 2011 Res. Astron. Astrophys. 11 353
[16] Li R and Wu X 2010 Sci. Chin. Phys. Mech. Astron. 53 1600
[17] Li R and Wu X 2010 Acta Phys. Sin. 59 7135 (in Chinese)
[18] Chen Y L and Wu X 2013 Acta Phys. Sin. 62 140501 (in Chinese)
[19] Li R and Wu X 2011 Chin. Phys. Lett. 28 070201
[20] Li R and Wu X 2011 Eur. Phys. J. Plus 126 73
[21] Qin M Z and Zhang M Q 1990 Comput. Math. Appl. 19 51
[22] Boreux J, Carletti T and Hubaux C 2010 arXiv:1012.3242 [nlin.PS]
[23] Chin S A 2012 arXiv:1206.1743 [math.NA]
[24] Hu W, Deng Z, Han S and Zhang W 2013 J. Comput. Phys. 235 394
[25] Lichtenberg A J and Lieberman M A 1983 Regular and Chaotic Dynamics (Berlin: Springer-Verlag)
Related articles from Frontiers Journals
[1] Lingxiao Wang, Yin Jiang, Lianyi He, and Kai Zhou. Continuous-Mixture Autoregressive Networks Learning the Kosterlitz–Thouless Transition[J]. Chin. Phys. Lett., 2022, 39(12): 080203
[2] Ze-Wang Zhang, Shuo Yang, Yi-Hang Wu, Chen-Xi Liu, Yi-Min Han, Ching-Hua Lee, Zheng Sun, Guang-Jie Li, Xiao Zhang. Predicting Quantum Many-Body Dynamics with Transferable Neural Networks[J]. Chin. Phys. Lett., 2020, 37(1): 080203
[3] S. Nazifkar, K. Javidan, M. Sarbishaei. Interaction of Double Sine-Gordon Solitons with External Potentials: an Analytical Model[J]. Chin. Phys. Lett., 2016, 33(12): 080203
[4] Jian Xu, Cheng-Bin Wang, Wei Zhang, Cui-Lan Ren, Heng-Feng Gong, Ping Huai. Atomistic Simulations of the Effect of Helium on the Dissociation of Screw Dislocations in Nickel[J]. Chin. Phys. Lett., 2016, 33(02): 080203
[5] WANG Zheng-Dao, YANG Jian-Fei, WEI Yi-Kun, QIAN Yue-Hong. A New Extrapolation Treatment for Boundary Conditions in Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2013, 30(9): 080203
[6] WEI Yi-Kun, QIAN Yue-Hong. Reducing Spurious Velocities at the Interfaces of Two-Phase Flows for Lattice Boltzmann Simulations[J]. Chin. Phys. Lett., 2012, 29(6): 080203
[7] MEI Li-Jie,WU Xin**,LIU Fu-Yao. A New Class of Scaling Correction Methods[J]. Chin. Phys. Lett., 2012, 29(5): 080203
[8] LI Rong, WU Xin** . Two New Fourth-Order Three-Stage Symplectic Integrators[J]. Chin. Phys. Lett., 2011, 28(7): 080203
[9] Mohammad Noh Daud, Gabriel G. Balint-Kurti. A Time-Dependent Wavepacket Method for Photodissociation Dynamics of Triatomic Molecule[J]. Chin. Phys. Lett., 2009, 26(7): 080203
[10] ZHU Meng-Hua, LIU Liang-Gang, XU Ao-Ao, Ma Tao. Automatic Estimation of Peak Regions in Gamma-Ray Spectra Measured by NaI Detector[J]. Chin. Phys. Lett., 2008, 25(11): 080203
[11] FU Jing-Li, FU Hao. A Field Method for Integrating Equations of Motion of Nonlinear Mechanico-Electrical Coupling Dynamical Systems[J]. Chin. Phys. Lett., 2008, 25(9): 080203
[12] LU Wei-Tao, ZHANG Hua, WANG Shun-Jin. Application of Symplectic Algebraic Dynamics Algorithm to Circular Restricted Three-Body Problem[J]. Chin. Phys. Lett., 2008, 25(7): 080203
[13] WANG Jun-Mao, ZHANG Miao, ZHANG Wen-Liang, ZHANG Rui, HAN Jia-Hua. A New Method for Constructing Travelling Wave Solutions to the modified Benjamin--Bona--Mahoney Equation[J]. Chin. Phys. Lett., 2008, 25(7): 080203
[14] YAO Ruo-Xia, LOU Sen-Yue,. A Maple Package to Compute Lie Symmetry Groups and Symmetry Reductions of (1+1)-Dimensional Nonlinear Systems[J]. Chin. Phys. Lett., 2008, 25(6): 080203
[15] BIAN Xue-Bin, LIU Hong-Ping, SHI Ting-Yun. A Time-Dependent Approach to High-Resolution Photoabsorption Spectrum of Rydberg Atoms in Magnetic Fields[J]. Chin. Phys. Lett., 2008, 25(6): 080203
Viewed
Full text


Abstract