Chin. Phys. Lett.  2013, Vol. 30 Issue (5): 057401    DOI: 10.1088/0256-307X/30/5/057401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Generalized Joint Density of States and Its Application to Exploring the Pairing Symmetry of High-Tc Superconductors
ZHANG Dan-Bo1,2, HAN Qiang1,2**, WANG Zi-Dan2**
1Department of Physics, Renmin University of China, Beijing 100872
2Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
Cite this article:   
ZHANG Dan-Bo, HAN Qiang, WANG Zi-Dan 2013 Chin. Phys. Lett. 30 057401
Download: PDF(1131KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We introduce a generalized joint density of states (GJDOS), which incorporates the coherent factors into the JDOS, to study quasiparticle interference (QPI) in superconductors. The intimate relation between the Fourier-transformed local density of states and GJDOS is revealed: they correspond respectively to the real and imaginary parts of a generalized impurity-response function, and particularly share the same angular factors and singular boundaries, as seen from our approximate analytic results for d-wave superconductors. Remarkably, our numerical GJDOS analysis agrees well with the QPI patten of d-wave cuprates and s±-wave iron-based superconductors. Moreover, we illustrate that the present GJDOS scenario can uncover the sign features of the superconducting gap and thus can be used to explore the pairing symmetry of the A1?xFe2?ySe2 (A=K,Cs, etc) superconductors.
Received: 14 March 2013      Published: 31 May 2013
PACS:  74.20.-z (Theories and models of superconducting state)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.72.-h (Cuprate superconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/5/057401       OR      https://cpl.iphy.ac.cn/Y2013/V30/I5/057401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Dan-Bo
HAN Qiang
WANG Zi-Dan
[1] Hoffman J E et al 2002 Science 297 1148
[2] McElroy K et al 2003 Nature 422 592
[3] Allan M P et al 2012 Science 336 563
[4] Wang Q H and Lee D H 2003 Phys. Rev. B 67 020511
[5] Pereg-Barnea T and Franz M 2005 Int. J. Mod. Phys. B 19 731
[6] McElroy K et al 2006 Phys. Rev. Lett. 96 067005
[7] Hanaguri T et al 2009 Science 323 923
[8] Hanaguri T et al 2010 Science 328 474
[9] Pereg-Barnea T and Franz M 2003 Phys. Rev. B 68 180506(R)
Pereg-Barnea T and Franz M 2008 Phys. Rev. B 78 020509(R)
[10] Vishik I M et al 2009 Nat. Phys. 5 718
[11] Capriotti L, Scalapino D J and Sedgewick R D 2003 Phys. Rev. B 68 014508
[12] Here (J_0+J_3)/2 corresponds just to the usual JDOS, namely the autocorrelation function of the single-particle spectral function (Ref. [6])
[13] Maltseva M and Coleman P 2009 Phys. Rev. B 80 144514
[14] Zhang D G and Ting C S 2004 Phys. Rev. B 69 012501
[15] Zhu L, Atkinson W A and Hirschfeld P J 2004 Phys. Rev. B 69 060503(R)
[16] Akbari A et al 2010 Phys. Rev. B 82 224506
[17] Guo J G et al 2010 Phys. Rev. B 82 180520(R)
[18] Liu R H et al 2011 Europhys. Lett. 94 27008
[19] Fang M et al 2011 Europhys. Lett. 94 27009
[20] Zhang Y et al 2011 Nat. Mater. 10 273
[21] Qian T et al 2011 Phys. Rev. Lett. 106 187001
[22] Zhao L et al 2011 Phys. Rev. B 83 140508(R)
[23] Wang F et al 2011 Europhys. Lett. 93 57003
[24] Maier T A et al 2011 Phys. Rev. B 83 100515(R)
[25] Saito T, Onari S and Kontani H 2011 Phys. Rev. B 83 140512(R)
[26] Zhou Y, Xu D H, Zhang F C and Chen W Q 2011 Europhys. Lett. 95 17003
[27] Fang C et al 2011 Phys. Rev. X 1 011009
Related articles from Frontiers Journals
[1] Yu Zhang, Jiawei Mei, and Weiqiang Chen. Enhanced Intertwined Spin and Charge Orders in the $t$–$J$ Model in a Small $J$ Case[J]. Chin. Phys. Lett., 2023, 40(3): 057401
[2] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 057401
[3] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 057401
[4] Li-Han Chen, Da Wang, Yi Zhou, Qiang-Hua Wang. Superconductivity, Pair Density Wave, and Néel Order in Cuprates[J]. Chin. Phys. Lett., 2020, 37(1): 057401
[5] Shuyuan Zhang, Guangyao Miao, Jiaqi Guan, Xiaofeng Xu, Bing Liu, Fang Yang, Weihua Wang, Xuetao Zhu, Jiandong Guo. Superconductivity of the FeSe/SrTiO$_{3}$ Interface in View of BCS–BEC Crossover[J]. Chin. Phys. Lett., 2019, 36(10): 057401
[6] Hui Meng, Huan Zhang, Wan-Sheng Wang, Qiang-Hua Wang. Thermal conductivity in near-nodal superconductors[J]. Chin. Phys. Lett., 2018, 35(12): 057401
[7] Zhidan Li, Qiang Han. Topological Invariants in Terms of Green's Function for the Interacting Kitaev Chain[J]. Chin. Phys. Lett., 2018, 35(7): 057401
[8] Zhidan Li, Qiang Han. Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling[J]. Chin. Phys. Lett., 2018, 35(4): 057401
[9] Gargee Sharma, Smita Sharma. Theoretical Study of Screening Dependence of Aluminium Doped MgB$_{2}$[J]. Chin. Phys. Lett., 2018, 35(3): 057401
[10] LIU Mi, ZHU Rui. Shot Noise of the Conductance through a Superconducting Barrier in Graphene[J]. Chin. Phys. Lett., 2015, 32(12): 057401
[11] ZHAO Zi-Xu, PAN Qi-Yuan, JING Ji-Liang. Holographic Superconductor Models with RF2 Corrections[J]. Chin. Phys. Lett., 2013, 30(12): 057401
[12] ZHOU Jian-Hui, QIN Tao, SHI Jun-Ren. Intra-Valley Spin-Triplet p+ip Superconducting Pairing in Lightly Doped Graphene[J]. Chin. Phys. Lett., 2013, 30(1): 057401
[13] Aditya M. Vora. Superconducting State Parameters of NbxTayMoz Superconductors[J]. Chin. Phys. Lett., 2010, 27(2): 057401
[14] Aditya M. Vora. Modified Transition Temperature Equation for Superconductors[J]. Chin. Phys. Lett., 2008, 25(6): 057401
[15] Aditya M. Vora. Superconducting State Parameters of CuCZr100-C Binary Amorphous Alloys by Pseudopotential Approach[J]. Chin. Phys. Lett., 2007, 24(9): 057401
Viewed
Full text


Abstract