Chin. Phys. Lett.  2013, Vol. 30 Issue (5): 057301    DOI: 10.1088/0256-307X/30/5/057301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Fano Resonance Based on Multimode Interference in Symmetric Plasmonic Structures and its Applications in Plasmonic Nanosensors
CHEN Zong-Qiang, QI Ji-Wei, CHEN Jing, LI Yu-Dong, HAO Zhi-Qiang, LU Wen-Qiang, XU Jing-Jun, SUN Qian**
MOE Key Laboratory of Weak Light Nonlinear Photonics, Tianjin Key Laboratory of Photonics Material and Technology, School of Physics, Nankai University, Tianjin 300071
Cite this article:   
CHEN Zong-Qiang, QI Ji-Wei, CHEN Jing et al  2013 Chin. Phys. Lett. 30 057301
Download: PDF(650KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel symmetric plasmonic structure consisting of a metal-insulator-metal waveguide and a rectangular cavity is proposed to investigate Fano resonance performance by adjusting the size of the structure. The Fano resonance originates from the interference between a local quadrupolar and a broad spectral line in the rectangular cavity. The tuning of the Fano profile is realized by changing the size of the rectangular cavity. The nanostructure is expected to work as an excellent plasmonic sensor with a high sensitivity of about 530 nm/RIU and a figure of merit of about 650.
Received: 28 January 2013      Published: 31 May 2013
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/5/057301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I5/057301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Zong-Qiang
QI Ji-Wei
CHEN Jing
LI Yu-Dong
HAO Zhi-Qiang
LU Wen-Qiang
XU Jing-Jun
SUN Qian
[1] Hao F, Sonnefraud Y, Dorpe P, Maier S A, Halas N J and Nordlander P 2008 Nano Lett. 8 3983
[2] Hao F, Nordlander P, Sonnefraud Y, Dorpe P and Maier S A 2009 ACS Nano 3 643
[3] Lassiter J B, Sobhani H, Fan J A, Kundu J, Capasso F, Nordlander P and Halas N J 2010 Nano Lett. 10 3184
[4] Chen J, Li Z, Yue S, Xiao J and Gong Q 2012 Nano Lett. 12 2494
[5] Piao X, Yu S and Park N 2012 Opt. Express 20 18994
[6] Zhang S, Bao K, Halas N J, Xu H and Nordlander P 2011 Nano Lett. 11 1657
[7] Collin S, Vincent G, Ha?dar R, Bardou N, Rommeluère S and Pelouard J L 2010 Phys. Rev. Lett. 104 027401
[8] Lu H, Liu X, Mao D and Wang G 2012 Opt. Lett. 37 3780
[9] Lu H, Liu X, Mao D, Gong Y and Wang G 2011 Opt. Lett. 36 3233
[10] Chen J, Li Z, Li J and Gong Q 2011 Opt. Express 19 9976
[11] Chen J, Wang C, Zhang R and Xiao J 2012 Opt. Lett. 37 5133
[12] Chen J, Li Z, Lei M, Fu X, Xiao J and Gong Q 2012 Plasmonics 7 441
[13] Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P and Halas N J 2012 Nano Lett. 12 1058
[14] Rahmani M, Lei D Y, Giannini V, Lukiyanchuk B, Ranjbar M, Liew T Y, Hong M and Maier S A 2012 Nano Lett. 12 2101
[15] Rybin M V, Khanikaev A B, Inoue M, Samusev K B, Steel M J, Yushin G and Limonov M F 2009 Phys. Rev. Lett. 103 023901
[16] Fan S 2002 Appl. Phys. Lett. 80 908
[17] Mingaleev S F, Miroshnichenko A E and Kivshar Y S 2008 Opt. Express 16 11647
[18] Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
[19] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[20] Chen Z, Chen j, Li Y, Pan D, Lu W, Xu J and Sun Q 2012 IEEE Photon. Technol. Lett. 24 1366
[21] Hao Z Q, Li Y D, Chen J, Chen Z Q, Xu J J and Sun Q 2012 Chin. Phys. Lett. 29 114212
[22] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chong C T 2010 Nat. Mater. 9 707
[23] Han Z, Forsberg E and He S 2007 IEEE Photon. Technol. Lett. 19 91
[24] Fano U 1961 Phys. Rev. 124 1866
[25] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[26] Pannipitiya A, Rukhlenko I D, Premaratne M, Hattori H T and Agrawal G P 2010 Opt. Express 18 6191
[27] Hu F, Yi H and Zhou Z 2011 Opt. Lett. 37 1500
[28] Zhang Q, Huang X, Lin X, Tao J and Jin X 2009 Opt. Express 17 7549
[29] White J S, Veronis G, Yu Z, Barnard E S, Chandran A, Fan S and Brongersma M L 2009 Opt. Lett. 34 686
[30] Becker J, Trügler A, Jakab A, Hohenester U and S?nnichsen C 2012 Plasmonics 5 161
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 057301
[2] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 057301
[3] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, and Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau[J]. Chin. Phys. Lett., 2022, 39(9): 057301
[4] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 057301
[5] Gongzheng Chen, Jin Lan, Tai Min, and Jiang Xiao. Narrow Waveguide Based on Ferroelectric Domain Wall[J]. Chin. Phys. Lett., 2021, 38(8): 057301
[6] Yun-Fei Zou and Li Yu. Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers[J]. Chin. Phys. Lett., 2021, 38(2): 057301
[7] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 057301
[8] Ping Jiang, Chao Li, Yuan-Yuan Chen, Gang Song, Yi-Lin Wang, Li Yu. Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity[J]. Chin. Phys. Lett., 2019, 36(10): 057301
[9] Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 057301
[10] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 057301
[11] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Erratum: Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance [Chin. Phys. Lett. 34(2017)057501][J]. Chin. Phys. Lett., 2017, 34(8): 057301
[12] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance[J]. Chin. Phys. Lett., 2017, 34(5): 057301
[13] Xin Sun. Generalized Hellmann–Feynman Theorem and Its Applications[J]. Chin. Phys. Lett., 2016, 33(12): 057301
[14] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 057301
[15] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 057301
Viewed
Full text


Abstract