Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 020505    DOI: 10.1088/0256-307X/28/2/020505
GENERAL |
A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises
ZHANG Ying-Qian, WANG Xing-Yuan**
Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024
Cite this article:   
ZHANG Ying-Qian, WANG Xing-Yuan 2011 Chin. Phys. Lett. 28 020505
Download: PDF(506KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a new communication system which is able to separate noise successfully by using independent component analysis (ICA), and a parameter modulation method based on a Lorenz chaotic system is employed for recovery of the source signals. The results indicate that our proposed secure communication has robustness against noise.
Keywords: 05.45.Vx      05.45.Gg      05.45.-a     
Received: 08 November 2010      Published: 30 January 2011
PACS:  05.45.Vx (Communication using chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/020505       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/020505
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ying-Qian
WANG Xing-Yuan
[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Guan X P, Peng H P, Li L X and Wang Y Q 2001 Acta Phys. Sin. 50 26 (in Chinese)
[3] Lü J H, Zhou T S and Zhang S C 2002 Chin. Phys. 11 12
[4] Halle K S, Wu C W, Itoh M and Chua L O 1993 Int. J. Bifurcat. Chaos 3 469
[5] Hua C C, Yang B, Ouyang G X and Guan X P 2005 Phys. Lett. A 342 305
[6] Freitas U S, Macau E E N and Grebogi C 2005 Phys. Rev. E 71 047203
[7] Hassan K K 2002 Nonlinear System (New Jersey: Prentice Hall) chap 9 p 374
[8] Chen M Y and Kurths J 2007 Phys. Rev. E 76 027203
[9] Dibakar G and Santo B 2008 Phys. Rev. E 78 056211
[10] Rong L, Duan Z S and Chen G R 2008 J. Phys. A: Math. Gen. 41 385103
[11] Duan Z S and Chen G R 2009 IEEE Trans. Circuits and Systems II 56 569
[12] Makeig S, Westerfield M, Jung T-P, Enghoff S, Townsend J, Courchesne E and Sejnowski T 2002 Science 295 690
[13] Stögbauer H, Kraskov A, Astakhov S A and Grassberger P 2004 Phys. Rev. E 70 066123
[14] Cardoso J F and Soulumiac A 1993 IEE Proc. F: Radar Signal Process. UK 140 362
[15] Karhunen J and Joutsensalo J 1994 Neural Networks 7 113
[16] Lorenz E N 1963 J. Atmos. Sci. 20 130
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 020505
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 020505
[3] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 020505
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 020505
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 020505
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 020505
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 020505
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 020505
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 020505
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 020505
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 020505
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 020505
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 020505
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 020505
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 020505
Viewed
Full text


Abstract