Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 020206    DOI: 10.1088/0256-307X/28/2/020206
GENERAL |
Stochastic Computational Approach for Complex Nonlinear Ordinary Differential Equations
Junaid Ali Khan1*, Muhammad Asif Zahoor Raja1**, Ijaz Mansoor Qureshi2
1Department of Electronic Engineering, International Islamic University, Islamabad, Pakistan
2Department of Electrical Engineering, Air University, Islamabad, Pakistan
Cite this article:   
Junaid Ali Khan, Muhammad Asif Zahoor Raja, Ijaz Mansoor Qureshi 2011 Chin. Phys. Lett. 28 020206
Download: PDF(440KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present an evolutionary computational approach for the solution of nonlinear ordinary differential equations (NLODEs). The mathematical modeling is performed by a feed-forward artificial neural network that defines an unsupervised error. The training of these networks is achieved by a hybrid intelligent algorithm, a combination of global search with genetic algorithm and local search by pattern search technique. The applicability of this approach ranges from single order NLODEs, to systems of coupled differential equations. We illustrate the method by solving a variety of model problems and present comparisons with solutions obtained by exact methods and classical numerical methods. The solution is provided on a continuous finite time interval unlike the other numerical techniques with comparable accuracy. With the advent of neuroprocessors and digital signal processors the method becomes particularly interesting due to the expected essential gains in the execution speed.
Keywords: 02.60.Lj      07.05.Mh      84.35.+i     
Received: 08 November 2010      Published: 30 January 2011
PACS:  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  84.35.+i (Neural networks)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/020206       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/020206
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Junaid Ali Khan
Muhammad Asif Zahoor Raja
Ijaz Mansoor Qureshi
[1] Parisi D R Laborde M A 2001 Comput. Chem. Eng. 25 1241
[2] Itoh M 2001 Int. J. Bifurcat. Chaos 11 605
[3] Chou J H Chen S H Chao C H 1998 J. Vib. Control 4 167
[4] Preidikman S Mook DT 2000 J. Vib. Control 6(8) 1135
[5] Shampine L F Reichelt M W 1997 SIAM J. Sci. Comput. 18 1
[6] Meada A J Fernandez A A 1994 Math. Comput. Model 19 1
[7] Monterola C Saloma C 1998 Phys. Rev. E 57 1247R
[8] Kahaner D Moler C Nash S 1989 Numerical Methods and Software (New Jersey: Prentice-Hall)
[9] Press W, Teukolsky S Vetterling W 1986 Numerical Recipes: the Art of Scientific Computing (New York: Cambridge University)
[10] Milligen B P V Tribaldos V Jimenez J A 1995 Phys. Rev. Lett. 75 3594
[11] Monterola C Saloma C 2001 Opt. Express 9 72
[12] Shirvany Y Hayati M Moradian R 2008 Commun. Nonlinear. Sci. 13 2132
[13] Lee H Kang I 1990 J. Comput. Phys. 91 110
[14] J H Holland 1975 Adaptation in Natural and Artificial Systems (Ann Arbor: University of Michigan)
[15] Pham D T Karaboga D 1998 Artif. Intell. Eng. 12 15
[16] Hornik K, Stinchcombe M, White H 1990 Neural. Networks 3 551
[17] Cybenko G 1989 Math. Control Signal 2 303
[18] de Ridder D 1996 Master Thesis (Delft University of Technology)
Related articles from Frontiers Journals
[1] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 020206
[2] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 020206
[3] SI Xin-Hui**, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong . Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls[J]. Chin. Phys. Lett., 2011, 28(4): 020206
[4] ZHANG Xiao-Yan, MENG Yao-Yong, **, ZHANG Hao, OU Wen-Juan, LIU Song-Hao . Fast Nondestructive Identification of Endothelium Corneum Gigeriae Galli Using Visible/Near-Infrared Spectroscopy[J]. Chin. Phys. Lett., 2011, 28(12): 020206
[5] Junaid Ali Khan**, Muhammad Asif Zahoor Raja**, Ijaz Mansoor Qureshi . Novel Approach for a van der Pol Oscillator in the Continuous Time Domain[J]. Chin. Phys. Lett., 2011, 28(11): 020206
[6] ZHANG Zhan-Long, DENG Jun, XIAO Dong-Ping, HE Wei, TANG Ju. An Adaptive Fast Multipole Higher Order Boundary Element Method for Power Frequency Electric Field of Substation[J]. Chin. Phys. Lett., 2010, 27(3): 020206
[7] ZHONG Qi-Shui, YU Yong-Bin, YU Jue-Bang. Fuzzy Modeling and Impulsive Control of a Memristor-Based Chaotic System[J]. Chin. Phys. Lett., 2010, 27(2): 020206
[8] FENG Jun-Sheng**, LIU Zheng, GUO Jian-You . Bound and Resonant States of the Hulthén Potential Investigated by Using the Complex Scaling Method with the Oscillator Basis[J]. Chin. Phys. Lett., 2010, 27(11): 020206
[9] YOOER Chi-Feng, XU Jian-Xue, ZHANG Xin-Hua. New Canards Bursting and Canards Periodic-Chaotic Sequence[J]. Chin. Phys. Lett., 2009, 26(7): 020206
[10] LIU Na, GUAN Zhi-Hong. The chaotification of discrete Hopfield neural networks via impulsive control[J]. Chin. Phys. Lett., 2009, 26(7): 020206
[11] MO Jia-Qi. A Variational Iteration Solving Method for a Class of Generalized Boussinesq Equations[J]. Chin. Phys. Lett., 2009, 26(6): 020206
[12] DING Qi, ZHANG Hong-Qing. Analytic Solution for Magnetohydrodynamic Stagnation Point Flow towards a Stretching Sheet[J]. Chin. Phys. Lett., 2009, 26(10): 020206
[13] MO Jia-Qi. Approximate Solution of Homotopic Mapping to Solitary Wave for Generalized Nonlinear KdV System[J]. Chin. Phys. Lett., 2009, 26(1): 020206
[14] GUO Liu-Xiao, XU Zhen-Yuan, HU Man-Feng,. Projective Synchronization in Drive--Response Networks via Impulsive Control[J]. Chin. Phys. Lett., 2008, 25(8): 020206
[15] GANG Tie-Qiang, MEI Feng-Xiang, CHEN Li-Jie. Structure-Preserving Algorithms for the Lorenz System[J]. Chin. Phys. Lett., 2008, 25(3): 020206
Viewed
Full text


Abstract