Chin. Phys. Lett.  2010, Vol. 27 Issue (11): 114205    DOI: 10.1088/0256-307X/27/11/114205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Laser Damage Mechanisms of Amorphous Ta2O5 Films at 1064, 532 and 355nm in One-on-One Regime
XU Cheng1**, QIANG Ying-Huai1, ZHU Ya-Bo1, GUO Li-Tong1, SHAO Jian-Da2, FAN Zheng-Xiu2
1School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116
2Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
Cite this article:   
XU Cheng, QIANG Ying-Huai, ZHU Ya-Bo et al  2010 Chin. Phys. Lett. 27 114205
Download: PDF(736KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ta2O5 films are deposited on fused silica substrates by conventional e−beam evaporation. Surface topography and chemical composition are examined by atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS). The calculation of electron structures of Ta2O5 and Ta2O5−x is attempted using a first-principle pseudopotential method within the local density approximation. The laser-induced damage threshold (LIDT) is performed at 1064, 532 and 355 nm in 1-on-1 regime, respectively. The results show that the LIDT increases with the wavelength increasing, which is in agreement with the wavelength effect. However, the LIDT results are not consistent with the empirical equation (I(λ)=aλm), which may be attributed to the intrinsic absorption of Ta2O5 at the wavelengths of 532 or/and 355 nm. Moreover, different damage morphologies are observed when the films are irradiated at different wavelengths. It is concluded that the laser damage at 1064 nm is the defect dominant mechanism and at 355 nm it is the intrinsic absorption dominant mechanism, whereas at 532 nm it is the combined defect and intrinsic absorption dominant mechanism.
Keywords: 42.79.-e      68.60.-p      81.15.Ef     
Received: 04 January 2010      Published: 22 October 2010
PACS:  42.79.-e (Optical elements, devices, and systems)  
  68.60.-p (Physical properties of thin films, nonelectronic)  
  81.15.Ef  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/11/114205       OR      https://cpl.iphy.ac.cn/Y2010/V27/I11/114205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Cheng
QIANG Ying-Huai
ZHU Ya-Bo
GUO Li-Tong
SHAO Jian-Da
FAN Zheng-Xiu
[1] Wolfe C R, Kozlowski M R, Campbell J H, Rainer F, Morgan A J and Gonzales R P 1989 Proc. SPIE 1438 360
[2] Xu C, Dong H C, Yuan L, He H B, Shao J D and Fan Z X 2009 Opt. Laser Technol. 41 258
[3] Zhao Y A, Shao J D, He H B and Fan Z X 2005 Proc. SPIE 5991 599117-1
[4] Xu C, Yao J K, Ma J Y, Jin Y X and Shao J D 2007 Chin. Opt. Lett. 5 727
[5] Xu C, Xiao Q L, Ma J Y, Jin Y X, Shao J D and Fan Z X 2008 Appl. Surf. Sci. 254 6554
[6] Manifacier J C, Gasiot J and Fillard J P 1976 J. Phys. E: Sci. Instrum. 9 1002
[7] ISO 11254-1:2000: Lasers and laser-related equipment-determination of laser-induced damage threshold of optical surfaces part 1 1-on-1 test
[8] Cho H J and Hwangbo C K 1996 Appl. Opt. 35 5545
[9] Heitmann W 1970 Thin Solid Films 5 61
[10] Macleod H A 1986 J. Vac. Sci. Technol. A 4 418
[11] Kozlowki M R and Chow R 1994 Proc. SPIE 2114 640
[12] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[13] Shvets V A, Aliev V Sh, Gritsenko D V, Shaimeev S S, Fedosenko E V, Rykhlitski S V, Atuchin V V, Gritsenko V A, Tapilin V M and Wong H 2008 J. Non-Cryst. Solids 354 3025
[14] Fleming R M, Lang D V, Jones C D W, Steigerwald M L, Murphy D W, Alers G B, Wong Y H, van Dover R B, Kwo J R and Sergent A M 2000 J. Appl. Phys. 88 850
[15] Sawada H and Kawakami K 1999 J. Appl. Phys. 86 956
[16] Demiryont H, Sites J R and Geib K 1985 Appl. Opt. 24 490
[17] Walker T W, Guenther A H and Nielsen P E 1981 IEEE J. Quantum Electron. 17 2053
[18] Kuzuu N, Yoshida K, Yoshida H, Kamimura T and Kamisugi N 1999 Appl. Opt. 38 2510
[19] Xu C, Li X, Dong H C, Jin Y X, He H B, Shao J D and Fan Z X 2008 Chin. Phys. Lett. 25 3300
[20] Walker T W, Guenther A H and Nielsen P E 1981 IEEE J. Quantum Electron. 17 2041
Related articles from Frontiers Journals
[1] M. Afshari Bavil,SUN Xiu-Dong*,HUANG Feng. Frequency Selective Propagation by Employing Fabry–Perot Nanocavities in a Subwavelength Double-slit Structure[J]. Chin. Phys. Lett., 2012, 29(4): 114205
[2] ZHU Xue-Feng, ZOU Xin-Ye, ZHOU Xiao-Wei, LIANG Bin, CHENG Jian-Chun**. Concealing a Passive Sensing System with Single-Negative Layers[J]. Chin. Phys. Lett., 2012, 29(1): 114205
[3] CHEN Xiao-Yong, SHENG Xin-Zhi**, WU Chong-Qing. Influence of Multi-Cascaded Semiconductor Optical Amplifiers on the Signal in an Energy-Efficient System[J]. Chin. Phys. Lett., 2012, 29(1): 114205
[4] ZHU Jia-Hu, HUANG Xu-Guang**, MEI Xian . Double-Teeth-Shaped Plasmonic Waveguide Electro-Optical Switches[J]. Chin. Phys. Lett., 2011, 28(8): 114205
[5] YU Huai-Yong, **, ZHANG Chun-Xi, FENG Li-Shuang, HONG Ling-Fei, WANG Jun-Jie, . Optical Noise Analysis in Dual-Resonator Structural Micro-Optic Gyro[J]. Chin. Phys. Lett., 2011, 28(8): 114205
[6] ZHOU Jing-Tao**, SHEN Hua-Jun, YANG Cheng-Yue, LIU Huan-Ming, TANG Yi-Dan, LIU Xin-Yu . Compact 2×2 Multi-Mode Interference Couplers with Uneven Splitting-Ratios Based on Silicon Nanowires[J]. Chin. Phys. Lett., 2011, 28(8): 114205
[7] LI Pei-Ning, LIU You-Wen**, MENG Yun-Ji, ZHU Min-Jun . A Multifrequency Cloak with a Single Shell of Negative Index Metamaterials[J]. Chin. Phys. Lett., 2011, 28(6): 114205
[8] XU Cheng, **, XU Lin-Min, ZHANG Han-Zhuo, QIANG Ying-Huai, ZHU Ya-Bo, LIU Jiong-Tian, SHAO Jian-Da . Comparative Studies on the Laser Damage Resistance of Ta2O5 and Nb2O5 Films Performed under Different Electron Beam Currents[J]. Chin. Phys. Lett., 2011, 28(6): 114205
[9] LIANG Hui-Min, WANG Jing-Quan, FAN Feng, QIN Ai-Li, ZHANG Chun-Yuan, CHENG Hui. Enhanced Surface-Plasmon-Polariton Interference for Nanolithography by a Micro-Cylinder-Lens Array[J]. Chin. Phys. Lett., 2010, 27(9): 114205
[10] WU Wen-Xuan, LUO Yan-Hua, CHENG Xu-Sheng, TIAN Xiu-Jie, QIU Wei-Wei, REN Xi-Feng, ZHU Bing, ZHANG Qi-Jin,. Effect of Zeroth-Order beam on Azobenzene Polymer Surface Relief Gratings Fabricated by Phase-Mask Method[J]. Chin. Phys. Lett., 2010, 27(9): 114205
[11] QU Wei, YE Hong-An,. A Novel Micro-Displacement Measuring Method Based on Optical Path Modulation[J]. Chin. Phys. Lett., 2010, 27(7): 114205
[12] N. J. Suthan Kissinger, G. Gnana Kumar, K. Perumal, J. Suthagar. Spectral Response and Photoelectrochemical Properties of Cd1-xZnxSe Films[J]. Chin. Phys. Lett., 2010, 27(5): 114205
[13] YU Tao, ZHANG Yi, LI Bao-Zhang, JIANG Wei-Long, WANG He, CAI Yong-An, LIU Wei, LI Feng-Yan, SUN Yun. CuInSe2 Films Prepared by a Plasma-Assisted Selenization Process in Different Working Pressures[J]. Chin. Phys. Lett., 2010, 27(2): 114205
[14] ZHENG Chao-Dan, , ZHANG Duan-Ming, LIU Xin-Ming, YANG Bin, LIU Chao-Jun, YU Jun. Effects of Depolarization Field and Interfacial Coupling on the Polarization of Ferroelectric Bilayers[J]. Chin. Phys. Lett., 2010, 27(1): 114205
[15] WANG Jing-Quan, LIANG Hui-Min, SHI Sha, DU Jing-Lei. Theoretical Analysis of Interference Nanolithography of Surface Plasmon Polaritons without a Match Layer[J]. Chin. Phys. Lett., 2009, 26(8): 114205
Viewed
Full text


Abstract