Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 077501    DOI: 10.1088/0256-307X/26/7/077501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Phase-Transition and Magnetic Moment of the Gd3+ Ion in the Gd2Fe17 Compound
HAO Yan-Ming1, FU Bin2, ZHOU Yan3, ZHAO Miao4
1Department of Physics, College of Science, Tianjin University of Science and Technology, Tianjin 3002222School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 1000833School of Science, Tianjin University of Commerce, Tianjin 3001344National Center for Nanoscience and Technology (NCNST), Beijing 100190
Cite this article:   
HAO Yan-Ming, FU Bin, ZHOU Yan et al  2009 Chin. Phys. Lett. 26 077501
Download: PDF(463KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The structure and magnetic phase transitions of the Gd2Fe17 compound are investigated by using a differential thermal/thermogravimetric analyzer, x-ray diffraction, and magnetization measurements. The result shows that there are two phase structures for the Gd2Fe17 compound: the hexagonal Th2Ni17-type structure at high temperatures (above 1243°C), and the rhombohedral Th2Zn17-type structure, respectively. A method to measure the magnetic moments of the Gd-sublattice and the Fe-sublattice in the Gd2Fe17 compound is presented. The moments of the Gd-sublattice and the Fe-sublattice in the Gd2Fe17 compound from 77 to 500K are measured in this way with a vibrating sample magnetometer. A detailed discussion is presented.
Keywords: 75.30.Et      75.60.Ej     
Received: 10 April 2009      Published: 02 July 2009
PACS:  75.30.Et (Exchange and superexchange interactions)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/7/077501       OR      https://cpl.iphy.ac.cn/Y2009/V26/I7/077501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAO Yan-Ming
FU Bin
ZHOU Yan
ZHAO Miao
[1] Buschow K H J 1991 Rep. Prog. Phys. 54 1123
[2] Coey J M D and Sun H 1990 J. Magn. Magn. Mater. 87 L251
[3] Bessais L, Dorolti E and Mariadassou C D 2005 J.Appl. Phys. 97 013902
[4] Hao Y M, Zhang Y Y, Jiang XY, Gao C J and Wu Y Z 2009 Chin. Phys. Lett. 269 026501
[5] Hao Y M, He XH, An LQ and Fu B 2008 Chin. Phys.Lett. 25 66
[6]Hao Y M, Zhao M and Gao Y 2003 Acta Phys. Sin. 52 3209 (in Chinese)
[7] HaoY M, Zhou Y and Zhao M 2005 J. Appl. Phys. 97 116102
[8]Ye V Shcher B, Ivanova G V, Mushnikov N V and Gervasieva IV 2000 J. Alloys Compd. 308 15
[9] JacobsT H, BuschowK H J, Zhou G F, Liu J P, Li X and deboer F R 1992 J. Magn. Magn. Mater. 104--107 1275
[10] Coehoorn C and Daalderop G H O 1992 J. Magn. Magn.Mater. 104--107 1081
[11] Uebele P, Hummler K and F\"{ahnle M 1996 Phys.Rev. B 53 3296
[12] Hummler K and F\"{ahnle M 1996 Phys. Rev. B 53 3272
[13] CoeyJ M D andLawer J F 1991 J. Appl. Phys. 693007
[14] Kurima K, Takahiro A and Hiroaki K 2006 J. AlloysCompd. 408 1404
Related articles from Frontiers Journals
[1] LI Ju-Fen, KUANG Xiao-Yu, ** . Analysis of Ground-State Zero-Field Splitting for Mn2+ in ZnNbOF56(H2O) and CoNbOF56(H2O)[J]. Chin. Phys. Lett., 2011, 28(6): 077501
[2] ZHOU Yun**, CHEN Miao-Gen, FENG Zhen-Jie, WANG Xin-Yan, CUI Yu-Jian, ZHANG Jin-Cang . High Magnetoelectric Coupling in Nano–Microscale Particulate Composites at Low Frequency[J]. Chin. Phys. Lett., 2011, 28(10): 077501
[3] GUO Jia-Jun, CHEN Lei, ZHAO Xu, FAN Su-Li, CHEN Wei. Effective Anisotropy in Magnetically Nd2Fe14B/α-Fe Nanocomposite[J]. Chin. Phys. Lett., 2010, 27(5): 077501
[4] GAO Ming-Liang, KUANG Xiao-Yu, ZHAO Ya-Ru, QI Lin, LI Yan-Fang. Correlation between Zero-Field Splitting and Site Distortions of Cr3+ Ions in NH4Cl:Cr3+ System: a Complete Energy Matrix Study[J]. Chin. Phys. Lett., 2009, 26(5): 077501
[5] ZHANG Jing, DU Jun, BAI Xiao-Jun, YOU Biao, ZHANG Wei, HU An. Training Effect and Hysteretic Behaviour of Angular Dependence of Exchange Bias in Co/IrMn Bilayers[J]. Chin. Phys. Lett., 2009, 26(4): 077501
[6] ZHAO Jing, WANG Yin-Jun, HAN Xiu-Feng. Dependence of Interlayer AF Coupling on Ferromagnetic Layer Thickness in [Pt/Co]5/Ru/[Co/Pt]5 Multilayers[J]. Chin. Phys. Lett., 2009, 26(3): 077501
[7] HAO Yan-Ming, ZHANG Yan-Yan, JIANG Xin-Yuan, GAO Chun-Jing, WU Yan-Zhao. Thermal Expansion Anomaly and Spontaneous Magnetostriction of Y2Fe14Al3 Compound[J]. Chin. Phys. Lett., 2009, 26(2): 077501
[8] FA Tao, XIANG Qing-Pei, YAO Shu-De. Fabrication of Co/CoO Exchange Bias System by Ion Implantation and Its Magnetic Properties[J]. Chin. Phys. Lett., 2009, 26(12): 077501
[9] SHE Sheng-Xian, WEI Dan, ZHENG Yang, QU Bing-Jun, REN Tian-Ling, LIU Xi, WEI Fu-Lin. Micromagnetic Simulation of Transfer Curve in Giant-Magnetoresistive Head[J]. Chin. Phys. Lett., 2009, 26(12): 077501
[10] WANG Xian-Ying, WANG Jing, YANG Jun-He. Ferro-/Ferri-Exchange Coupled Magnetic Double Layers For High Density Magneto-optical Data Storage[J]. Chin. Phys. Lett., 2009, 26(10): 077501
[11] LIU Hai-Qing, SU Shao-Kui, JING Xiu-nian, LIU Ying, LI Yan-rong, HE Lun-Hua, GE Pei-Wen, YAN Qi-Wei, WANG Yun-Ping. Shape Dependence of Low-Temperature Magnetic Relaxation of Mn12Ac[J]. Chin. Phys. Lett., 2008, 25(7): 077501
[12] GUO Guang-Hua, ZHANG Guang-Fu, SUN Li-Yuan, Peter A. J. de Groot. Phase Diagram of Antiferromagnetically Exchange-Coupled Bilayer[J]. Chin. Phys. Lett., 2008, 25(7): 077501
[13] WANG Xian-Ying, WANG Jing, WANG Zhan-Yong, YANG Jun-He. Novel Bilayer Structures for Short Wavelength High Density Magneto-Optical Data Storage[J]. Chin. Phys. Lett., 2008, 25(6): 077501
[14] R. Masrour, M. Hamedoun, A. Benyoussef, A. Hourmatallah, K. Bouslykhane, N. Benzakour. Effect of Co-Substitution on Magnetic Properties in Spinels GeNi2O4 Systems[J]. Chin. Phys. Lett., 2008, 25(11): 077501
[15] WANG Zhi-Hong, H. -U. HABERMEIER, G. CRISTIANI, SUN Ji-Rong, SHEN Bao-Gen. Asymmetric Magnetization Reversal Probed by Recoil Loop Measurements inan Exchange Biased La0.67Sr0.33MnO3/La0.33Ca0.67MnO3 Bilayer Film[J]. Chin. Phys. Lett., 2008, 25(1): 077501
Viewed
Full text


Abstract