|
Effects of Time Delay on Stability of an Unstable State in a Bistable System with Correlated Noises
LI Chun, MEI Dong-Cheng, **
Chin. Phys. Lett. 2011, 28 (4):
040501
.
DOI: 10.1088/0256-307X/28/4/040501
Effects of time delay on stability of an unstable state in a time-delayed bistable system are investigated. The analytic expression of the transition rate W(xu,τ) from unstable state xu to stable state x+ is derived. The numerical calculation results of W(xu,τ) indicate that W(xu,τ) decreases with the increasing multiplicative noise intensity, the additive noise intensity and the strength of correlations between the multiplicative and the additive noise increase, but W(xu,τ) increases with increasing delay time. Namely, the multiplicative noise, the additive noise and the correlations between the multiplicative and the additive noises enhance the stability of the unstable state in the time-delayed bistable system but the stability is weakened by time delay.
|
|
Temperature Compensation for Threshold Current and Slope Efficiency of 1.3µm InAs/GaAs Quantum-Dot Lasers by Facet Coating Design
XU Peng-Fei, YANG Tao**, JI Hai-Ming, CAO Yu-Lian, GU Yong-Xian, WANG Zhan-Guo
Chin. Phys. Lett. 2011, 28 (4):
044201
.
DOI: 10.1088/0256-307X/28/4/044201
We demonstrate a technique of temperature compensation for 1.3 µm InAs/GaAs quantum-dot (QD) lasers by facet coating design. The key point of the technique is to make sure that the mirror loss of the lasers decreases as the temperature rises. To realize this, we design a type of facet coating by shifting the central wavelength of the facet coating from 1310 nm to 1480 nm, whose reflectivity increases as the emission wavelength of the lasers red-shifts. Consequently, the laser with the new facet coating exhibits a characteristic temperature doubled in size and a more stable slope efficiency in the temperature range from 10°C to 70°C, compared with the traditional one with a temperature-independent mirror loss.
|
|
Suppression Impact of Group-Velocity Dispersion on the Cell of Pulse Cleaning
LI Jing, DENG Ying, WANG Jian-Jun, LI Ming-Zhong, XU Dang-Peng, LIN Hong-Huan, ZHU Na, ZHANG Rui, JING Feng**
Chin. Phys. Lett. 2011, 28 (4):
044202
.
DOI: 10.1088/0256-307X/28/4/044202
In order to improve the signal-to-noise ratio of an all-fiber front-end system for high-energy pete-watt (PW) laser devices, we propose a method to restrain the noise by optical Kerr effect. In terms of analytical calculation, it is found that the signal-to-noise ratio can be increased by three orders of magnitude with the cell of pulse cleaning for the pulses, with the full width at half maximum T FWHM larger than 100 ps. However, numerical calculation indicates that the group−velocity dispersion (GVD) may have a marked effect on the pulses with TFWHM smaller than 100 ps but larger than 5 ps, with the help of self-phase modulation (SPM). This would debase the performance of the cell of pulse cleaning. Meanwhile, we study the methods of restraining the distortion for the pulses with different peak powers to improve the performance of an all-fiber front-end system for high-energy PW laser devices, These results are of benefit to the experiments and the improvement of signal-to-noise ratio for high-energy PW laser devices.
|
|
Sensitive Detection of Individual Neutral Atoms in a Strong Coupling Cavity QED System
ZHANG Peng-Fei, ZHANG Yu-Chi, LI Gang, DU Jin-Jin, ZHANG Yan-Feng, GUO Yan-Qiang, WANG Jun-Min, ZHANG Tian-Cai**, LI Wei-Dong
Chin. Phys. Lett. 2011, 28 (4):
044203
.
DOI: 10.1088/0256-307X/28/4/044203
We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime. A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5 mm above the micro-cavity center. The atoms fall down freely in gravitation after shutting off the magneto-optical trap and pass through the cavity. The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually. We detect the single atom transits either in the resonance or various detunings. The single atom vacuum-Rabi splitting is directly measured to be Ω=2π×23.9 MHz. The average duration of atom-cavity coupling of about 110 µs is obtained according to the probability distribution of the atom transits.
|
|
Theoretical Revision and Experimental Comparison of Quantum Yield for Transmission-Mode GaAlAs/GaAs Photocathodes
SHI Feng, , ZHANG Yi-Jun, CHENG Hong-Chang, ZHAO Jing, XIONG Ya-Juan, CHANG Ben-Kang**
Chin. Phys. Lett. 2011, 28 (4):
044204
.
DOI: 10.1088/0256-307X/28/4/044204
The quantum yield formula for uniform-doping GaAlAs/GaAs transmission-mode photocathodes is revised by taking into account the light absorption in the window layer. By using the revised quantum yield formula, the domestic and ITT's experimental quantum yield curves are fitted and the fitted curves match well with the experimental curves. In addition, the fit results show that the integral sensitivity and quantum yield of domestic image intensifier tube has achieved 2130 µA/lm and 45%, nearly reaching ITT's third generation level in 2002, whereas the discrepancy in cathode performance is mainly embodied in the electron diffusion length and back interface recombination velocity.
|
|
A Successive Scans Method of Adjusting Scan-Time for Injection Electroluminescent Display Panels
OU Peng, YANG Gang**, JIANG Quan, WANG Jun, HU Jian-Hua, WU Qi-Peng, LUO Kai-Jun**
Chin. Phys. Lett. 2011, 28 (4):
044205
.
DOI: 10.1088/0256-307X/28/4/044205
Aiming at the problem of luminance uniformity for injection electroluminescent display panels, we present a new scan method for display panels according to successive scans theory. First, on the basis of the number of pixels requiring light emitting in one frame period, we adjust the scan time for each row. Secondly, for ensuring image transmission synchronization, the frame period must to be a constant. We adopt a 64×32 LED display panel as an example to expound the new scan method and we obtain the good result that the reduce amplitude of luminance non-uniformity is 31.34% and the increase amplitude of the average luminance value is 7.8258%.
|
|
Spectral Characteristics of CN Radical (B→X) and Its Application in Determination of Rotational and Vibrational Temperatures of Plasma
PENG Zhi-Min, DING Yan-Jun**, ZHAI Xiao-Dong, YANG Qian-Suo, JIANG Zong-Lin
Chin. Phys. Lett. 2011, 28 (4):
044703
.
DOI: 10.1088/0256-307X/28/4/044703
The aim is to resolve the difficulties of measurement of temperature at several thousands of Celsius degrees for some unstable non-equilibrium gas flows. Based on the molecular spectroscopy theory and inherent molecular structure characteristics of the CN radical, the dependence of the spectral profile on the rotational temperature (RT), vibrational temperature (VT) and optical apparatus function are numerically explored within some certain ranges. Meanwhile, by comparing the numerically calculated spectra with the experimental spectra of the CN radical, the corresponding RT and VT of the plasma induced by the interaction of the laser pulse from an oscillated Nd:YAG laser with the coal target are determined, respectively. In addition, a short discussion on the thermodynamic state and the energy transfer process of the CN radical is also given.
|
|
Improving the Quality of the Deteriorated Regions of Multicrystalline Silicon Ingots during General Solar Cell Processes
WU Shan-Shan, WANG Lei**, YANG De-Ren
Chin. Phys. Lett. 2011, 28 (4):
046103
.
DOI: 10.1088/0256-307X/28/4/046103
The behavior of wafers and solar cells from the border of a multicrystalline silicon (mc-Si) ingot, which contain deteriorated regions, is investigated. It is found that the diffusion length distribution of minority carriers in the cells is uniform, and high efficiency of the solar cells (about 16%) is achieved. It is considered that the quality of the deteriorated regions could be improved to be similar to that of adjacent regions. Moreover, it is indicated that during general solar cell fabrication, phosphorus gettering and hydrogen passivation could significantly improve the quality of deteriorated regions, while aluminum gettering by RTP could not. Therefore, it is suggested that the border of a mc-Si ingot could be used to fabricate high efficiency solar cells, which will increase mc-Si utilization effectively.
|
|
Ideal Strengths and Bonding Properties of PuO2 under Tension
WANG Bao-Tian, ZHANG Ping**
Chin. Phys. Lett. 2011, 28 (4):
047101
.
DOI: 10.1088/0256-307X/28/4/047101
We perform a first-principles computational tensile test on PuO2 based on density−functional theory within a local density approximation (LDA)+U formalism to investigate its structural, mechanical, magnetic and intrinsic bonding properties in four representative directions: [001], [100], [110] and [111]. The stress−strain relations show that the ideal tensile strengths in the four directions are 81.2, 80.5, 28.3 and 16.8 GPa at strains of 0.36, 0.36, 0.22 and 0.18, respectively. The [001] and [100] directions are prominently stronger than the other two directions since more Pu–O bonds participate in the pulling process. By charge and density of state analysis along the [001] direction, we find that the strong mixed ionic/covalent character of the Pu–O bond is weakened by tensile strain and PuO2 will exhibit an insulator-to-metal transition after tensile stresses exceeding about 79 GPa.
|
|
Electronic Density Decay Lengths of Pb Films from First Principles Calculations
LI Meng, JIN Hong-Bo, LI Jin-Ming, SUN Qiang, JIA Yu**
Chin. Phys. Lett. 2011, 28 (4):
047302
.
DOI: 10.1088/0256-307X/28/4/047302
The electronic density decay lengths of freestanding Pb films are investigated by first-principles calculations. The results show that, like surface energy and work function, the electronic density decay length λ exhibits pronounced oscillatory behavior as a function of film thickness and this is expected to have an impact on surface chemical reactivity. For freestanding Pb(111) films, λ oscillates following a bilayer pattern interrupted by crossovers, and the separation between two neighbor crossovers is 9 monolayers. For the films on Si(111) substrates, the oscillations of the decay lengths are similar to those of freestanding films except for an extra phase shift.
|
|
Deflection Reduction of GaN Wafer Bowing by Coating or Cutting Grooves in the Substrates
SUN Tao, WANG Ming-Qing, SUN Yong-Jian, WANG Bo-Ping, ZHANG Guo-Yi, TONG Yu-Zhen, DUAN Hui-Ling**
Chin. Phys. Lett. 2011, 28 (4):
047303
.
DOI: 10.1088/0256-307X/28/4/047303
GaN films on sapphire substrates are obtained using the metal-organic chemical vapor deposition growth technique. We present two methods to reduce the GaN wafer bowing caused by the mismatch of the thermal expansion coefficients (TECs) between the film and the substrate. The first method is to use coating materials on the back side of the substrate whose TECs are smaller than that of the GaN films. The second is to cut grooves on the back side of the sapphire substrate and filling the grooves with appropriate materials (e.g., tungsten, silicon nitride). For each method, we minimize wafer bowing and even reduce it to zero. Moreover, the two methods can reduce stress concentration and suppress the propagation of cracks in the GaN/sapphire structure.
|
|
Electronic Properties of Bilayer Zigzag Graphene Nanoribbons: First Principles Study
OUYANG Fang-Ping, **, CHEN Li-Jian, XIAO Jin, ZHANG Hua
Chin. Phys. Lett. 2011, 28 (4):
047304
.
DOI: 10.1088/0256-307X/28/4/047304
Based on the density functional theory, we calculate the dependence of the band structures of bilayer zigzag-edged graphene nanoribbons (BZGNRs) upon ribbon width, interlayer distance and stacking styles. Unlike monolayer zigzag GNR, whose energy gap is always zero under different ribbon widths, the gap of BZGNR varies greatly with the ribbon width or the interlayer distance. The greatest gaps for AA-stacking and AB-stacking BZGNRs are about 0.22 eV and 0.12 eV, respectively, which implies that gap-tuning of AA-BZGNRs is more effective than that of AB-BZGNRs. These results present a way to tune the band structures of BZGNRs and also provide theoretical guidance for the fabrication of GNR-based piezoelectric devices.
|
|
Multilayer Antireflection Coating for Triple Junction Solar Cells
ZHAN Feng**, WANG Hai-Li, HE Ji-Fang, WANG Juan, HUANG She-Song, NI Hai-Qiao, NIU Zhi-Chuan
Chin. Phys. Lett. 2011, 28 (4):
047802
.
DOI: 10.1088/0256-307X/28/4/047802
According to the theory of optical films, we simulate the reflectivity of antireflection coatings (ARCs) for solar cells of Ga0.5In0.5P/GaAs/Ge based on an optical transfer matrix. In order to provide sufficient consideration of the refractive index dispersion effect of multilayer ARCs, we use multi−dimensional matrix data for reliable simulation. After the reflection curves are obtained, the effective average reflectance Re is introduced to optimize the film system by minimizing Re. Optimization of single layer (Al2O3), double layer (MgF2/ZnS) and triple layer (MgF2/Al2O3/ZnS) ARCs is realized by using this method for space and terrestrial applications. Effects of these ARCs are compared after optimization. These theoretical parameters can be used to guide experiments.
|
|
Preparation of Gd2O2S:Yb,Ho Phosphor via Thermolysis of Sulfur−Contained (Gd,Yb,Ho)[S2CN(C4H8)]3 Phen Complexes
ZHONG Hai-Yang, LUO Xi-Xian**, MA Lu-Bin, ZHANG Ming, XING Ming-Ming, FU Yao
Chin. Phys. Lett. 2011, 28 (4):
047805
.
DOI: 10.1088/0256-307X/28/4/047805
A novel handy single-source precursor method is adopted to prepare Gd2O2S:Yb,Ho up−conversion phosphors. Pure Gd2O2S:Yb0.06Ho0.02 phosphors are prepared via thermolysis of the air−stable ternary solid complexes RE[S2CN(C4H8)]3phen (RE=Gd, Yb, Ho) in a nitrogen atmosphere with certain amount of oxygen at 600–1100 °C. The as−prepared Gd2O2S:Yb0.06Ho0.02 exhibits a strong green up−conversion luminescence under 980 nm IR excitation. The intensity of the green emission component is 37.4 and 53.4 times more than that of the red and NIR emissions, respectively. It is indicated that the material is of excellent color purity. Under an IR excitation density of 34.75 mW/mm2 with a laser beam diameter of 1 mm, the material exhibits an up−conversion luminescence brightness of 43.68 Cd/m2.
|
|
Growth of 2 µm Crack-Free GaN on Si(111) Substrates by Metal Organic Chemical Vapor Deposition
WEI Meng**, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, PAN Xu, HOU Qi-Feng, WANG Zhan-Guo
Chin. Phys. Lett. 2011, 28 (4):
048102
.
DOI: 10.1088/0256-307X/28/4/048102
A 2 µm high quality crack-free GaN film was successfully grown on 2-inch Si(111) substrates by metal organic chemical vapor deposition with a high temperature AlN/graded-AlGaN multibuffer and an AlN/GaN superlattice interlayer. It is found that the structures, as well as the thicknesses of the multibuffer and interlayer, are crucial for the growth of a crack-free GaN epilayer. The GaN(0002) XRD FWHM of the crack-free sample is 479.8 arcsec, indicating good crystal quality. An AlGaN/GaN heterostructure was grown and tested by Van der Pauw Hall measurement. The electron mobility of two-dimensional electron gas increases from 1928 cm2/V⋅s to 12277 cm2/V⋅s when the test-temperature decreases from room temperature to liquid nitrogen temperature. The electron mobility is comparable to that of AlGaN/GaN heterostructures grown on sapphire, and the largest value is obtained for an AlGaN/GaN/Si(111) heterostructure grown by metal organic chemical vapor deposition.
|
|
Thermoelectric Properties of Te-Doped Ba0.32Co4Sb12−xTexPrepared at HPHT
REN Guo-Zhong, LIU Yang, MA Hong-An, SU Tai-Chao, LIN Le-Jing, DENG Le, JIANG Yi-Ping, ZHENG Shi-Zhao, JIA Xiao-Peng**
Chin. Phys. Lett. 2011, 28 (4):
048401
.
DOI: 10.1088/0256-307X/28/4/048401
Polycrystalline skutterudites Ba0.32Co4Sb12−xTex (nominally x=0.1–0.7) are synthesized by the high pressure and high temperature (HPHT) method. The influence of Te substitution on electrical transport properties are investigated in the temperature range of 300–710 K. All the samples show n−type conduction. It is found that the presence of Te substantially decreases electrical resistivity without any detrimental effect on the Seebeck coefficients, which improves the power factor. Among all the samples, Ba0.32Co4Sb11.5Te0.5 shows the highest thermoelectric figure of merit of 0.76 at 710 K.
|
|
Scale-Free Brain Networks Based on the Event-Related Potential during Visual Spatial Attention
LI Ling**, JIN Zhen-Lan
Chin. Phys. Lett. 2011, 28 (4):
048701
.
DOI: 10.1088/0256-307X/28/4/048701
The human brain is thought of as one of the most complex dynamical systems in the universe. The network view of the dynamical system has emerged since the discovery of scale-free networks. Brain functional networks, which represent functional associations among brain regions, are extracted by measuring the temporal correlations from electroencephalogram data. We measure the topological properties of the brain functional network, including degree distribution, average degree, clustering coefficient and the shortest path length, to compare the networks of multi-channel event-related potential activity between visual spatial attention and unattention conditions. It is found that the degree distribution of the brain functional networks under both the conditions is a power law distribution, which reflects a scale-free property. Moreover, the scaling exponent of the attention condition is significantly smaller than that of the unattention condition. However, the degree distribution of equivalent random networks does not follow the power law distribution. In addition, the clustering coefficient of these random networks is smaller than those of brain networks, and the shortest path length of these random networks is large and comparable with those of brain networks. Our results, typical of scale-free networks, indicate that the scaling exponent of brain activity could reflect different cognitive processes.
|
66 articles
|