error
Content of PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES in our journal
    Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Simulation Prediction of Heat Transport with Machine Learning in Tokamak Plasmas
Hui Li, Yan-Lin Fu, Ji-Quan Li, and Zheng-Xiong Wang
Chin. Phys. Lett.    2023, 40 (12): 125201 .   DOI: 10.1088/0256-307X/40/12/125201
Abstract   HTML   PDF (1663KB)
Machine learning opens up new possibilities for research of plasma confinement. Specifically, models constructed using machine learning algorithms may effectively simplify the simulation process. Previous first-principles simulations could provide physics-based transport information, but not fast enough for real-time applications or plasma control. To address this issue, this study proposes SExFC, a surrogate model of the Gyro-Landau Extended Fluid Code (ExFC). As an extended version of our previous model ExFC-NN, SExFC can capture more features of transport driven by the ion temperature gradient mode and trapped electron mode, using an extended database initially generated with ExFC simulations. In addition to predicting the dominant instability, radially averaged fluxes and radial profiles of fluxes, the well-trained SExFC may also be suitable for physics-based rapid predictions that can be considered in real-time plasma control systems in the future.
Experimental Investigations of Quasi-Coherent Micro-Instabilities in J-TEXT Ohmic Plasmas
Peng Shi, G. Zhuang, Zhifeng Cheng, Li Gao, Yinan Zhou, Yong Liu, J. T. Luo, and Jingchun Li
Chin. Phys. Lett.    2024, 41 (5): 055201 .   DOI: 10.1088/0256-307X/41/5/055201
Abstract   HTML   PDF (1034KB)
Quasi-coherent micro-instabilities is one of the key topics of magnetic confinement fusion. This work focuses on the quasi-coherent spectra of ion temperature gradient (ITG) and trapped-electron-mode instabilities using newly developed far-forward collective scattering measurements within ohmic plasmas in the J-TEXT tokamak. The ITG mode is characterized by frequencies ranging from 30 to 100 kHz and wavenumbers ($k_{\theta}\rho_{\rm s})$ less than 0.3. Beyond a critical plasma density threshold, the ITG mode undergoes a bifurcation, which is marked by a reduction in frequency and an enhancement in amplitude. Concurrently, enhancements in ion energy loss and degradation in confinement are observed. This ground-breaking discovery represents the first instance of direct experimental evidence that establishes a clear link between ITG instability and ion thermal transport.
Simulation of Rotating Asymmetric Sideways Forces during Vertical Displacement Events in CFETR
Changzhi Jiang, Shunwen Wang, Zhenyu Zhou, Di Hu, Bo Li, and JOREK team
Chin. Phys. Lett.    2024, 41 (8): 085201 .   DOI: 10.1088/0256-307X/41/8/085201
Abstract   HTML   PDF (3769KB)
Tokamak plasmas with elongated cross sections are susceptible to vertical displacement events (VDEs), which can damage the first wall via heat flux or electromagnetic (EM) forces. We present a 3D nonlinear reduced magnetohydrodynamic (MHD) simulation of CFETR plasma during a cold VDE following the thermal quench, focusing on the relationship among the EM force, plasma displacement, and the $n=1$ mode. The dominant mode, identified as $m/n = 2/1$, becomes destabilized when most of the current is contracted within the $q = 2$ surface. The displacement of the plasma current centroid is less than that of the magnetic axis due to the presence of SOL current in the open field line region. Hence, the symmetric component of the induced vacuum vessel current is significantly mitigated. The direction of the sideways force keeps a constant phase approximately compared to the asymmetric component of the vacuum vessel current and the SOL current, which in turn keep in-phase with the dominant $2/1$ mode. Their amplitudes are also closely associated with the growth of the dominant mode. These findings provide insights into potential methods for controlling the phase and amplitude of sideways forces during VDEs in the future.
Ionization Potential Depression Model for Warm/Hot and Dense Plasmas
Chensheng Wu, Fuyang Zhou, Jun Yan, Xiang Gao, Yong Wu, Chunhua Zeng, and Jianguo Wang
Chin. Phys. Lett.    2024, 41 (8): 085202 .   DOI: 10.1088/0256-307X/41/8/085202
Abstract   HTML   PDF (2110KB)
For warm/hot and dense plasmas (WDPs), ionization potential depression (IPD) plays a crucial role in determining its ionization balance and understanding the resultant microscopic plasma properties. A sophisticated and unified IPD model is necessary to resolve those existing discrepancies between theoretical and experimental results. However, the applicability of those widely used IPD models nowadays is limited, especially for the nonlocal thermodynamic equilibrium (non-LTE) dense plasma produced by short-pulse laser. In this work, we propose an IPD model that considers inelastic atomic processes, in which three-body recombination and collision ionization processes are found to play a crucial role in determining the electron distribution and IPD for a WDP. This IPD model is validated by reproducing latest experimental results of Al plasmas with a wide-range condition of 70 eV–700 eV temperature and $0.2$–$3$ times solid density, as well as a typical non-LTE system of hollow Al ions. It is demonstrated that the present IPD model has a significant temperature dependence due to the consideration of the inelastic collision processes. With a lower computational cost and wider application range of plasma conditions, the proposed model is expected to provide a promising tool to study the ionization balance and the atomic processes, as well as the related radiation and particle transports properties of the WDP.
  First page | Prev page | Next page | Last page Page 1 of 1, 4 records