中国物理快报
Chinese Physics Letters
Citation Search
Quick Search
Advanced search
|
E-mail Alert
|
RSS
Chin. Phys. Lett.
Express Letters
Topic Collections
Browse
In Press
Current Issue
Earlier Issues
Browse by Subject
Author
Submit an Article
Instruction for Authors
Copyright Agreement
Ethical Policy
Templates
Referees
Review Policy
Referee Login
Editor in Chief Login
Editor Login
Office Login
About
About CPL
Editorial Board
Editorial Board of Young Scientists
Contact
CPS Journals
物理
物理学报
Chinese Physics B
error
Browse CPL
» In Press
» Current Issue
» Earlier Issues
» View by Fields
» Viewpoints
Topic Collections
»
Chiral Anomaly
»
Topological Physics
»
2D Material
»
Cold Atom
»
Strong field and Attosecond Physics
»
Optical Field Manipulation
»
Construction of functional devices toward atomic-scale: fundamentals and frontiers
»
Thermodynamics and Thermal Metamaterials
»
Quantum Information, Quantum Optics, Quantum Computation
»
Magnetism
»
Strongly Correlated Electronic System
Announcement
»
CPL announces Outstanding Referees 2019
»
Highlights of 2019
»
Highlights of 2020
»
Highlights of 2021
Content of FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) in our journal
Published in last 1 year
|
In last 2 years
|
In last 3 years
|
All
Please wait a minute...
For Selected:
View Abstracts
Download Citations
EndNote
Reference Manager
ProCite
BibTeX
RefWorks
Toggle Thumbnails
Select
Rydberg-Atom Terahertz Heterodyne Receiver with Ultrahigh Spectral Resolution
Zhenyue She, Xiaojie Zhu, Yayi Lin, Xianzhe Li, Xiaolin Yang, Yanfei Shang, Yuqin Teng, Haitao Tu, Kaiyu Liao, Caixia Zhang, Xiaohong Liu, Jiehua Chen, and Wei Huang
Chin. Phys. Lett. 2024, 41 (
8
): 084201 . DOI: 10.1088/0256-307X/41/8/084201
Abstract
HTML
PDF
(2147KB)
Terahertz heterodyne receivers with high sensitivity and spectral resolution are crucial for various applications. Here, we present a room-temperature atomic terahertz heterodyne receiver that achieves ultrahigh sensitivity and frequency resolution. At a signal frequency of 338.7 GHz, we obtain a sensitivity of $2.88\pm0.09$ µV$\cdot$cm$^{-1}\cdot$Hz$^{-1/2}$ for electric field measurements. The calibrated linear dynamical range spans approximately 89 dB, ranging from $-110$ dBV/cm to $-21$ dBV/cm. We demodulate a 400 symbol stream encoded in 4-state phase-shift keying, demonstrating excellent phase detection capability. By scanning the frequency of the local oscillator, we realize a terahertz spectrometer with Hz level frequency resolution. This resolution is more than two orders of magnitude higher than that of existing terahertz spectrometers. The demonstrated terahertz heterodyne receiver holds promising potential for working across the entire terahertz spectrum, significantly advancing its practical applications.
Select
Robust Transfer of Optical Frequency over 500 km Fiber Link with Instability of $10^{-21}$
Qian Zhou, Xiang Zhang, Qi Zang, Mengfan Wu, Dan Wang, Jie Liu, Ruifang Dong, Tao Liu, and Shougang Zhang
Chin. Phys. Lett. 2024, 41 (
8
): 084202 . DOI: 10.1088/0256-307X/41/8/084202
Abstract
HTML
PDF
(1556KB)
Our primary objective is to mitigate the adverse effects of temperature fluctuations on the optical frequency transmission system by reducing the length of the interferometer. Following optimization, the phase-temperature coefficient of the optical system is reduced to approximately 1.35 fs/K. By applying a sophisticated temperature control to the remained “out-of-loop” optics fiber, the noise floor of the system has been effectively lowered to $10^{-21}$ level. Based on this performance-enhanced transfer system, we demonstrate coherent transmission of optical frequency through 500-km spooled fiber link. After being actively compensated, the transfer instability of $4.5\times 10^{-16}$ at the averaging time of 1 s and $5.6\times 10^{-21}$ at 10000 s is demonstrated. The frequency uncertainty of received light at remote site relative to that of the origin light at local site is achieved to be $1.15\times 10^{-19}$. This enhanced system configuration is particularly well suited for future long-distance frequency transmission and comparison of the most advanced optical clock signals.
Select
Solitons and Their Biperiodic Pulsation in Ultrafast Fiber Lasers Based on CB/GO
Zhen-Tao Ju, Zhi-Zeng Si, Xin Yan, and Chao-Qing Dai
Chin. Phys. Lett. 2024, 41 (
8
): 084203 . DOI: 10.1088/0256-307X/41/8/084203
Abstract
HTML
PDF
(1334KB)
The carbon black (CB) is introduced to manufacture CB/graphene oxide (GO) composite material to mitigate limitations of GO as a saturable absorber with the excellent performance in ultrafast fiber lasers. At a central wavelength of 1555.5 nm, the stable mode-locked pulse with width of 656 fs, repetition rate of 20.16 MHz, and high signal-to-noise ratio of 82.07 dB is experimentally obtained. Additionally, experimental observations for pulsation phenomena of vector biperiodic solitons combining period-1 and period-17, period-2 and period-32, period-3 and period-36 are verified via simulations.
Select
Turbulent Image Restoration in Atmosphere with Cyclopean Processing via Binocular Fusion
Han Yao, Jin-Yan Lin, Li-Bang Chen, Yi-Kun Liu, and Jian-Ying Zhou
Chin. Phys. Lett. 2024, 41 (
8
): 084205 . DOI: 10.1088/0256-307X/41/8/084205
Abstract
HTML
PDF
(5860KB)
The outstanding issue to overcoming atmospheric turbulence on distant imaging is a fundamental interest and technological challenge. We propose a novel scenario and technique to restore the optical image in turbulent environmental by referring to Cyclopean image with binocular vision. With human visual intelligence, image distortion resulting from the turbulence is shown to be substantially suppressed. Numerical simulation results taking into account of the atmospheric turbulence, optical image system, image sensors, display and binocular vision perception are presented to demonstrate the robustness of the image restoration, which is compared with a single channel planar optical imaging and sensing. Experiment involving binocular telescope, image recording and the stereo-image display is conducted and good agreement is obtained between the simulation with perceptive experience. A natural extension of the scenario is to enhance the capability of anti-vibration or anti-shaking for general optical imaging with Cyclopean image.
Select
High-Resolution Recognition of Orbital Angular Momentum Modes in Asymmetric Bessel Beams Assisted by Deep Learning
Pengfei Xu, Xin Tong, Zishuai Zeng, Shuxi Liu, and Daomu Zhao
Chin. Phys. Lett. 2024, 41 (
7
): 074201 . DOI: 10.1088/0256-307X/41/7/074201
Abstract
HTML
PDF
(3969KB)
Fractional orbital angular momentum (OAM) vortex beams present a promising way to increase the data throughput in optical communication systems. Nevertheless, high-precision recognition of fractional OAM with different propagation distances remains a significant challenge. We develop a convolutional neural network (CNN) method to realize high-resolution recognition of OAM modalities, leveraging asymmetric Bessel beams imbued with fractional OAM. Experimental results prove that our method achieves a recognition accuracy exceeding 94.3% for OAM modes, with an interval of 0.05, and maintains a high recognition accuracy above 92% across varying propagation distances. The findings of our research will be poised to significantly contribute to the deployment of fractional OAM beams within the domain of optical communications.
Select
Nonreciprocal Photon Blockade Based on Zeeman Splittings Induced by a Fictitious Magnetic Field
Xin Su, Biao-Bing Jin, Jiang-Shan Tang, and Keyu Xia
Chin. Phys. Lett. 2024, 41 (
7
): 074202 . DOI: 10.1088/0256-307X/41/7/074202
Abstract
HTML
PDF
(1193KB)
Quantum nonreciprocity, such as nonreciprocal photon blockade, has attracted a great deal of attention due to its unique applications in quantum information processing. Its implementation primarily relies on rotating nonlinear systems, based on the Sagnac effect. Here, we propose an all-optical approach to achieve nonreciprocal photon blockade in an on-chip microring resonator coupled to a V-type Rb atom, which arises from the Zeeman splittings of the atomic hyperfine sublevels induced by the fictitious magnetic field of a circularly polarized control laser. The system manifests single-photon blockade or multi-photon tunneling when driven from opposite directions. This nonreciprocity results from the directional detunings between the countercirculating probe fields and the V-type atom, which does not require the mechanical rotation and facilitates integration. Our work opens up a new route to achieve on-chip integrable quantum nonreciprocity, enabling applications in chiral quantum technologies.
Select
Nonlinear Multimodal Interference as Ultrafast Photonic Device for Dual-Wavelength Domain-Wall Dark Pulse Generation
Shan Wang, Bo-Le Song, Xin-He Dou, Fei-Hong Qiao, Xiang Li, Jin-Bo Wang, and Zhi-Guo Lv
Chin. Phys. Lett. 2024, 41 (
7
): 074203 . DOI: 10.1088/0256-307X/41/7/074203
Abstract
HTML
PDF
(837KB)
In comparison to bright pulses, better stability that is not susceptible to loss makes dark pulses accessible for applications in such fields as signal processing, optics sensing, and quantum communication. Here we investigate the dual-wavelength domain-wall dark pulse generation in a graded-index multimode fiber (GIMF) based anomalous dispersion single-mode fiber (SMF) laser. By optimizing intra-cavity nonlinearity and pulse polarization, the mode-locked states can evolve each other between bright pulses, dark pulses, and bright-dark pulse pairs. The evolution mechanism among them may be relevant to the coherent mode superposition, spectral filtering, and mode selection in SMF-GIMF-SMF hybrid-fiber modulation devices that affect the pulse formation and evolution in temporal, frequency, and space domains. These results provide a valuable reference for promoting further development of nonlinear optics and ultrafast optics, in which ultrafast photonic devices, with low cost, simple manufacture as well as wide adaptability, as novel pulsed generation technique, play a vital role.
Select
Higher-Order Nonlinear Effects on Optical Soliton Propagation and Their Interactions
Houhui Yi, Xiaofeng Li, Junling Zhang, Xin Zhang, and Guoli Ma
Chin. Phys. Lett. 2024, 41 (
7
): 074204 . DOI: 10.1088/0256-307X/41/7/074204
Abstract
HTML
PDF
(4041KB)
When pursuing femtosecond-scale ultrashort pulse optical communication, one cannot overlook higher-order nonlinear effects. Based on the fundamental theoretical model of the variable coefficient coupled high-order nonlinear Schrödinger equation, we analytically explore the evolution of optical solitons in the presence of high-order nonlinear effects. Moreover, the interactions between two nearby optical solitons and their transmission in a nonuniform fiber are investigated. The stability of optical soliton transmission and interactions are found to be destroyed to varying degrees due to higher-order nonlinear effects. The outcomes may offer some theoretical references for achieving ultra-high energy optical solitons in the future.
Select
Manipulating the Spatial Structure of Second-Order Quantum Coherence Using Entangled Photons
Shuang-Yin Huang, Jing Gao, Zhi-Cheng Ren, Zi-Mo Cheng, Wen-Zheng Zhu, Shu-Tian Xue, Yan-Chao Lou, Zhi-Feng Liu, Chao Chen, Fei Zhu, Li-Ping Yang, Xi-Lin Wang, and Hui-Tian Wang
Chin. Phys. Lett. 2024, 41 (
7
): 074205 . DOI: 10.1088/0256-307X/41/7/074205
Abstract
HTML
PDF
(19267KB)
High-order quantum coherence reveals the statistical correlation of quantum particles. Manipulation of quantum coherence of light in the temporal domain enables the production of the single-photon source, which has become one of the most important quantum resources. High-order quantum coherence in the spatial domain plays a crucial role in a variety of applications, such as quantum imaging, holography, and microscopy. However, the active control of second-order spatial quantum coherence remains a challenging task. Here we predict theoretically and demonstrate experimentally the first active manipulation of second-order spatial quantum coherence, which exhibits the capability of switching between bunching and anti-bunching, by mapping the entanglement of spatially structured photons. We also show that signal processing based on quantum coherence exhibits robust resistance to intensity disturbance. Our findings not only enhance existing applications but also pave the way for broader utilization of higher-order spatial quantum coherence.
Select
Dissipation-Driven Superradiant Phase Transition of a Two-Dimensional Bose–Einstein Condensate in a Double Cavity
Bo-Hao Wu, Xin-Xin Yang, Yu Chen, and Wei Zhang
Chin. Phys. Lett. 2024, 41 (
6
): 064201 . DOI: 10.1088/0256-307X/41/6/064201
Abstract
HTML
PDF
(463KB)
We study superradiant phase transitions in a hybrid system of a two-dimensional Bose–Einstein condensate of atoms and two cavities arranged with a tilt angle. By adjusting the loss rate of cavities, we map out the phase diagram of steady states within a mean field framework. It is found that when the loss rates of the two cavities are different, superradiant transitions may not occur at the same time in the two cavities. A first-order phase transition is observed between the states with only one cavity in superradiance and both in superradiance. In the case that both cavities are superradiant, a net photon current is observed flowing from the cavity with small decay rate to the one with large decay rate. The photon current shows a non-monotonic dependence on the loss rate difference, owing to the competition of photon number difference and cavity field phase difference. Our findings can be realized and detected in experiments.
Select
Time Transfer in a 1839-km Telecommunication Fiber Link Demonstrating a Picosecond-Scale Stability
Xinxing Guo, Bing'an Hou, Bo Liu, Fan Yang, Weicheng Kong, Tao Liu, Ruifang Dong, and Shougang Zhang
Chin. Phys. Lett. 2024, 41 (
6
): 064202 . DOI: 10.1088/0256-307X/41/6/064202
Abstract
HTML
PDF
(2037KB)
An implementation of high-precision time transfer over a 1839-km field fiber loop back link between two provincial capitals of China, Xi'an and Taiyuan, is reported. Time transfer stabilities of 6.5 ps at averaging time of 1 s and 4.6 ps at 40000 s were achieved. The uncertainty for the time transfer system was evaluated, showing a budget of 56.2 ps. These results stand for a significant milestone in achieving high-precision time transfer over a field fiber link spanning thousands of kilometers, signifying a record-breaking achievement for the real-field time transfer in both stability and distance, which paves the way for constructing the nationwide high-precision time service via fiber network.
Select
High-Power Raman Soliton Generation at 1.7 μm in All-Fiber Polarization-Maintaining Erbium-Doped Amplifier
Zi-Peng Xu, Xuan Wang, Chuan-Fei Yao, Lin-Jing Yang, and Ping-Xue Li
Chin. Phys. Lett. 2024, 41 (
5
): 054201 . DOI: 10.1088/0256-307X/41/5/054201
Abstract
HTML
PDF
(604KB)
An all-fiber polarization maintaining high-power laser system operating at 1.7 µm based on the Raman-induced soliton self-frequency shifting effect is demonstrated. The entirely fiberized system is built by erbium-doped oscillator and two-stage amplifiers with polarization maintaining commercial silica fibers and devices, which can provide robust and stable soliton generation. High-power soliton laser with the average power of 0.28 W, the repetition rate of 42.7 MHz, and pulse duration of 515 fs is generated directly from the main amplifier. Our experiment provides a feasible method for high-power all-fiber polarization maintaining femtosecond laser generation working at 1.7 µm.
Select
ESM Cloud Toolkit: A Copilot for Energy Storage Material Research
Jing Xu, Ruijuan Xiao, and Hong Li
Chin. Phys. Lett. 2024, 41 (
5
): 054701 . DOI: 10.1088/0256-307X/41/5/054701
Abstract
HTML
PDF
(1886KB)
Searching and designing new materials play crucial roles in the development of energy storage devices. In today's world where machine learning technology has shown strong predictive ability for various tasks, the combination with machine learning technology will accelerate the process of material development. Herein, we develop ESM Cloud Toolkit for energy storage materials based on MatElab platform, which is designed as a convenient and accurate way to automatically record and save the raw data of scientific research. The ESM Cloud Toolkit includes multiple features such as automatic archiving of computational simulation data, post-processing of experimental data, and machine learning applications. It makes the entire research workflow more automated and reduces the entry barrier for the application of machine learning technology in the domain of energy storage materials. It integrates data archive, traceability, processing, and reutilization, and allows individual research data to play a greater role in the era of AI.
Select
Dark Localized Waves in Shallow Waters: Analysis within an Extended Boussinesq System
Zhengping Yang, Wei-Ping Zhong, and Milivoj Belić
Chin. Phys. Lett. 2024, 41 (
4
): 044201 . DOI: 10.1088/0256-307X/41/4/044201
Abstract
HTML
PDF
(1849KB)
We study dark localized waves within a nonlinear system based on the Boussinesq approximation, describing the dynamics of shallow water waves. Employing symbolic calculus, we apply the Hirota bilinear method to transform an extended Boussinesq system into a bilinear form, and then use the multiple rogue wave method to obtain its dark rational solutions. Exploring the first- and second-order dark solutions, we examine the conditions under which these localized solutions exist and their spatiotemporal distributions. Through the selection of various parameters and by utilizing different visualization techniques (intensity distributions and contour plots), we explore the dynamical properties of dark solutions found: in particular, the first- and second-order dark rogue waves. We also explore the methods of their control. The findings presented here not only deepen the understanding of physical phenomena described by the (1$+$1)-dimensional Boussinesq equation, but also expand avenues for further research. Our method can be extended to other nonlinear systems, to conceivably obtain higher-order dark rogue waves.
Select
Realization of an Adaptive Radiative Cooler with a Multilayer-Filter VO$_{\bf{2}}$-Based Fabry–Pérot Cavity
Hengli Xie, Huaiyuan Yin, and Chunzhen Fan
Chin. Phys. Lett. 2024, 41 (
4
): 044202 . DOI: 10.1088/0256-307X/41/4/044202
Abstract
HTML
PDF
(888KB)
A high-performance adaptive radiative cooler comprising a multilayer-filter VO$_{2}$-based Fabry–Pérot (FP) cavity is proposed. The bottom FP cavity has four layers, VO$_{2}$/NaCl/PVC/Ag. Based on the phase transition of VO$_{2}$, the average emissivity in the transparent window can be switched from 3.7% to 96.3%. Additionally, the average emissivity can also be adjusted with external strain to the PVC layer, providing another way to attain the desired cooling effect. An upper filter is included to block most of the solar radiation and provide a transmittance of 96.7% in the atmospheric window. At high temperature, the adaptive emitter automatically activates radiative cooling. The net cooling power is up to 156.4 W$\cdot $m$^{-2}$ at an ambient temperature of 303 K. Our adaptive emitter still exhibits stable selective emissivity at different incident angles and heat transfer coefficients. At low temperature, the radiative cooling automatically deactivates, and the average emissivity decreases to only 3.8%. Therefore, our work not only provides new insights into the design of high-performance adaptive radiative coolers but also advances the development of intelligent thermal management.
Select
Unveiling of Terahertz Emission from Ultrafast Demagnetization and the Anomalous Hall Effect in a Single Ferromagnetic Film
Zhiqiang Lan, Zhangshun Li, Haoran Xu, Fan Liu, Zuanming Jin, Yan Peng, and Yiming Zhu
Chin. Phys. Lett. 2024, 41 (
4
): 044203 . DOI: 10.1088/0256-307X/41/4/044203
Abstract
HTML
PDF
(670KB)
Using THz emission spectroscopy, we investigate the elementary spin dynamics in ferromagnetic single-layer Fe on a sub-picosecond timescale. We demonstrate that THz radiation changes its polarity with reversal of the magnetization applied by the external magnetic field. In addition, it is found that the sign of THz polarity excited from different sides is defined by the thickness of the Fe layer and Fe/dielectric interface. Based on the thickness and symmetry dependences of THz emission, we experimentally distinguish between the two major contributions: ultrafast demagnetization and the anomalous Hall effect. Our experimental results not only enrich understanding of THz electromagnetic generation induced by femtosecond laser pulses but also provide a practical way to access laser-induced ultrafast spin dynamics in magnetic structures.
Select
Three-Soliton Interactions and the Implementation of Their All-Optical Switching Function
Houhui Yi, Xin Zhang, Lingxian Shi, Yanli Yao, Shubin Wang, and Guoli Ma
Chin. Phys. Lett. 2024, 41 (
4
): 044204 . DOI: 10.1088/0256-307X/41/4/044204
Abstract
HTML
PDF
(5751KB)
As a key component in all-optical networks, all-optical switches play a role in constructing all-optical switching. Due to the absence of photoelectric conversion, all-optical networks can overcome the constraints of electronic bottlenecks, thereby improving communication speed and expanding their communication bandwidth. We study all-optical switches based on the interactions among three optical solitons. By analytically solving the coupled nonlinear Schrödinger equation, we obtain the three-soliton solution to the equation. We discuss the nonlinear dynamic characteristics of various optical solitons under different initial conditions. Meanwhile, we analyze the influence of relevant physical parameters on the realization of all-optical switching function during the process of three-soliton interactions. The relevant conclusions will be beneficial for expanding network bandwidth and reducing power consumption to meet the growing demand for bandwidth and traffic.
Select
Reversible Optical Isolators and Quasi-Circulators Using a Magneto-Optical Fabry–Pérot Cavity
Tiantian Zhang, Wenpeng Zhou, Zhixiang Li, Yutao Tang, Fan Xu, Haodong Wu, Han Zhang, Jiang-Shan Tang, Ya-Ping Ruan, and Keyu Xia
Chin. Phys. Lett. 2024, 41 (
4
): 044205 . DOI: 10.1088/0256-307X/41/4/044205
Abstract
HTML
PDF
(2631KB)
Nonreciprocal optical devices are essential for laser protection, modern optical communication and quantum information processing by enforcing one-way light propagation. The conventional Faraday magneto-optical nonreciprocal devices rely on a strong magnetic field, which is provided by a permanent magnet. As a result, the isolation direction of such devices is fixed and severely restricts their applications in quantum networks. In this work, we experimentally demonstrate the simultaneous one-way transmission and unidirectional reflection by using a magneto-optical Fabry–Pérot cavity and a magnetic field strength of 50 mT. An optical isolator and a three-port quasi-circulator are realized based on this nonreciprocal cavity system. The isolator achieves an isolation ratio of up to 22 dB and an averaged insertion loss down to 0.97 dB. The quasi-circulator is realized with a fidelity exceeding $99\%$ and an overall survival probability of $89.9\%$, corresponding to an insertion loss of $\sim$ $0.46$ dB. The magnetic field is provided by an electromagnetic coil, thereby allowing for reversing the light circulating path. The reversible quasi-circulator paves the way for building reconfigurable quantum networks.
Select
An LED-Side-Pumped Intracavity Frequency-Doubled Nd,Ce:YAG Laser Producing a 2 W Q-Switched Red Beam
Jianping Shen, Shaocong Xu, Peng LU, Rongrong Jiang, Wei Wang, Siwei Zhang, Fengyang Xing, Yang Chen, and Liang Chen
Chin. Phys. Lett. 2024, 41 (
3
): 034201 . DOI: 10.1088/0256-307X/41/3/034201
Abstract
HTML
PDF
(8033KB)
We report a high-average-power acousto-optic (AO) Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode (LED) pumped two-rod Nd,Ce:YAG laser module. Under quasi-continuous wave operation conditions, a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz, corresponding to a maximum optical efficiency of 13.9% and a slope efficiency of 17.9%. In the active Q-switched regime, the pulse energy of the laser was as high as 800 µJ at a repetition rate of 10 kHz with a pulse width of 1.5 µs. Under non-critical phase-matched KTP crystal conditions, an average power of 2.03 W of 658.66 nm through intracavity frequency-doubling was obtained at a repetition frequency of 10 kHz with a duration of 1.3 µs, and the $M^{2}$ factor was measured to be about 5.8. To the best of our knowledge, this is the highest average power of an LED-pumped AO Q-switched 1319 nm laser and intracavity frequency-doubled red laser reported to date.
Select
Experimental Investigation of the Anisotropic Thermal Conductivity of C/SiC Composite Thin Slab
Ke-Fan Wu, Hu Zhang, and Gui-Hua Tang
Chin. Phys. Lett. 2024, 41 (
3
): 034401 . DOI: 10.1088/0256-307X/41/3/034401
Abstract
HTML
PDF
(3261KB)
Fiber-reinforced composites possess anisotropic mechanical and heat transfer properties due to their anisotropic fibers and structure distribution. In C/SiC composites, the out-of-plane thermal conductivity has mainly been studied, whereas the in-plane thermal conductivity has received less attention due to their limited thickness. In this study, the slab module of a transient plane source method is adopted to measure the in-plane thermal conductivity of a 2D plain woven C/SiC composite slab, and the test uncertainty is analyzed numerically. The numerical investigation proves that the slab module is reliable for measuring the isotropic and anisotropic slabs with in-plane thermal conductivity greater than 10 W$\cdot$m$^{-1}\cdot $K$^{-1}$. The anisotropic thermal conductivity of the 2D plain woven C/SiC composite slab is obtained within the temperature range of 20–900 ℃ by combining with a laser flash analysis method to measure the out-of-plane thermal conductivity. The results demonstrate that the out-of-plane thermal conductivity of C/SiC composite decreases with temperature, while its in-plane thermal conductivity first increases with temperature and then decreases, and the ratio of in-plane thermal conductivity to out-of-plane thermal conductivity is within 2.2–3.1.
Select
Intense Mid-Infrared Laser Pulse Generated via Flying-Mirror Red-Shifting in Near-Critical-Density Plasmas
Yu Lu, Dong-Ao Li, Qian-Ni Li, Fu-Qiu Shao, and Tong-Pu Yu
Chin. Phys. Lett. 2024, 41 (
2
): 024101 . DOI: 10.1088/0256-307X/41/2/024101
Abstract
HTML
PDF
(6174KB)
Relativistic femtosecond mid-infrared pulses can be generated efficiently by laser interaction with near-critical-density plasmas. It is found theoretically and numerically that the radiation pressure of a circularly polarized laser pulse first compresses the plasma electrons to form a dense flying mirror with a relativistic high speed. The pulse reflected by the mirror is red-shifted to the mid-infrared range. Full three-dimensional simulations demonstrate that the central wavelength of the mid-infrared pulse is tunable from 3 µm to 14 µm, and the laser energy conversion efficiency can reach as high as 13$\%$. With a 0.5–10 PW incident laser pulse, the generated mid-infrared pulse reaches a peak power of 10–180 TW, which is interesting for various applications in ultrafast and high-field sciences.
Select
Joint Authentication Public Network Cryptographic Key Distribution Protocol Based on Single Exposure Compressive Ghost Imaging
Wen-Kai Yu, Shuo-Fei Wang, and Ke-Qian Shang
Chin. Phys. Lett. 2024, 41 (
2
): 024201 . DOI: 10.1088/0256-307X/41/2/024201
Abstract
HTML
PDF
(26897KB)
In the existing ghost-imaging-based cryptographic key distribution (GCKD) protocols, the cryptographic keys need to be encoded by using many modulated patterns, which undoubtedly incurs long measurement time and huge memory consumption. Given this, based on snapshot compressive ghost imaging, a public network cryptographic key distribution protocol is proposed, where the cryptographic keys and joint authentication information are encrypted into several color block diagrams to guarantee security. It transforms the previous single-pixel sequential multiple measurements into multi-pixel single exposure measurements, significantly reducing sampling time and memory storage. Both simulation and experimental results demonstrate the feasibility of this protocol and its ability to detect illegal attacks. Therefore, it takes GCKD a big step closer to practical applications.
Select
Real-Time Observation of Instantaneous ac Stark Shift of a Vacuum Using a Zeptosecond Laser Pulse
Dandan Su and Miao Jiang
Chin. Phys. Lett. 2024, 41 (
1
): 014201 . DOI: 10.1088/0256-307X/41/1/014201
Abstract
HTML
PDF
(2086KB)
Based on the numerical solution of the time-dependent Dirac equation, we propose a method to observe in real time the ac Stark shift of a vacuum driven by an ultra-intense laser field. By overlapping the ultra-intense pump pulse with another zeptosecond probe pulse whose photon energy is smaller than $2mc^2$, electron–positron pair creation can be controlled by tuning the time delay between the pump and probe pulses. Since the pair creation rate depends sensitively on the instantaneous vacuum potential, one can reconstruct the ac Stark shift of the vacuum potential according to the time-delay-dependent pair creation rate.
Select
Optical Nonlinearity of Violet Phosphorus and Applications in Fiber Lasers
Hui-ran Yang, Meng-ting Qi, Xu-peng Li, Ze Xue, Chen-hao Lu, Jia-wei Cheng, Dong-dong Han, and Lu Li
Chin. Phys. Lett. 2024, 41 (
1
): 014202 . DOI: 10.1088/0256-307X/41/1/014202
Abstract
HTML
PDF
(4984KB)
A D-shaped fiber is coated with a new two-dimensional nanomaterial, violet phosphorus (VP), to create a saturable absorber (SA) with a modulation depth of 3.68%. Subsequently, the SA is inserted into a fiber laser, enabling successful generation of dark solitons and bright–dark soliton pairs through adjustment of the polarization state within the cavity. Through further study, mode-locked pulses are achieved, proving the existence of polarization-locked vector solitons. The results indicate that VP can be used as a polarization-independent SA.
Select
Optical-Microwave Entanglement Paves the Way for Distributed Quantum Computation
Zhi-Gang Hu, Kai Xu, Yu-Xiang Zhang, and Bei-Bei Li
Chin. Phys. Lett. 2024, 41 (
1
): 014203 . DOI: 10.1088/0256-307X/41/1/014203
Abstract
HTML
PDF
(1989KB)
Select
Three-Wave Mixing of Dipole Solitons in One-Dimensional Quasi-Phase-Matched Nonlinear Crystals
Yuxin Guo, Xiaoxi Xu, Zhaopin Chen, Yangui Zhou, Bin Liu, Hexiang He, Yongyao Li, and Jianing Xie
Chin. Phys. Lett. 2024, 41 (
1
): 014204 . DOI: 10.1088/0256-307X/41/1/014204
Abstract
HTML
PDF
(5272KB)
A quasi-phase-matched technique is introduced for soliton transmission in a quadratic $[\chi^{(2)}]$ nonlinear crystal to realize the stable transmission of dipole solitons in a one-dimensional space under three-wave mixing. We report four types of solitons as dipole solitons with distances between their bimodal peaks that can be laid out in different stripes. We study three cases of these solitons: spaced three stripes apart, one stripe apart, and confined to the same stripe. For the case of three stripes apart, all four types have stable results, but for the case of one stripe apart, stable solutions can only be found at $\omega_{1}=\omega_{2}$, and for the condition of dipole solitons confined to one stripe, stable solutions exist only for Type1 and Type3 at $\omega_{1}=\omega_{2}$. The stability of the soliton solution is solved and verified using the imaginary time propagation method and real-time transfer propagation, and soliton solutions are shown to exist in the multistability case. In addition, the relations of the transportation characteristics of the dipole soliton and the modulation parameters are numerically investigated. Finally, possible approaches for the experimental realization of the solitons are outlined.
Select
Modulation of High-Order Harmonic Generation from a Monolayer ZnO by Co-rotating Two-Color Circularly Polarized Laser Fields
Yue Qiao, Jiaqi Chen, Shushan Zhou, Jigen Chen, Shicheng Jiang, and Yujun Yang
Chin. Phys. Lett. 2024, 41 (
1
): 014205 . DOI: 10.1088/0256-307X/41/1/014205
Abstract
HTML
PDF
(6866KB)
By numerically solving the two-dimensional semiconductor Bloch equation, we study the high-order harmonic emission of a monolayer ZnO under the driving of co-rotating two-color circularly polarized laser pulses. By changing the relative phase between the fundamental frequency field and the second one, it is found that the harmonic intensity in the platform region can be significantly modulated. In the higher order, the harmonic intensity can be increased by about one order of magnitude. Through time-frequency analysis, it is demonstrated that the emission trajectory of monolayer ZnO can be controlled by the relative phase, and the harmonic enhancement is caused by the second quantum trajectory with the higher emission probability. In addition, near-circularly polarized harmonics can be generated in the co-rotating two-color circularly polarized fields. With the change of the relative phase, the harmonics in the platform region can be altered from left-handed near-circularly polarization to right-handed one. Our results can obtain high-intensity harmonic radiation with an adjustable ellipticity, which provides an opportunity for syntheses of circularly polarized attosecond pulses.
Select
Acoustic Bilayer Gradient Metasurfaces for Perfect and Asymmetric Beam Splitting
Jiaqi Quan, Baoyin Sun, Yangyang Fu, Lei Gao, and Yadong Xu
Chin. Phys. Lett. 2024, 41 (
1
): 014301 . DOI: 10.1088/0256-307X/41/1/014301
Abstract
HTML
PDF
(8285KB)
We experimentally and theoretically present a paradigm for the accurate bilayer design of gradient metasurfaces for wave beam manipulation, producing an extremely asymmetric splitting effect by simply tailoring the interlayer size. This concept arises from anomalous diffraction in phase gradient metasurfaces and the precise combination of the phase gradient in bilayer metasurfaces. Ensured by different diffraction routes in momentum space for incident beams from opposite directions, extremely asymmetric acoustic beam splitting can be generated in a robust way, as demonstrated in experiments through a designed bilayer system. Our work provides a novel approach and feasible platform for designing tunable devices to control wave propagation.
Select
Modifying the Electron Dynamics in High-Order Harmonic Generation via a Two-Color Laser Field
Cai-Ping Zhang and Xiang-Yang Miao
Chin. Phys. Lett. 2023, 40 (
12
): 124201 . DOI: 10.1088/0256-307X/40/12/124201
Abstract
HTML
PDF
(5546KB)
We investigate the harmonic emission from bichromatic periodic potential by numerically solving the time-dependent Schrödinger equation in the velocity gauge. The results show that the harmonic minimum is sensitive to the wavelength. Moreover, distinct crystal momentum states contribute differently to harmonic generation. In momentum space, the electron dynamics reveal a close relationship between the spectral minimum and the electron distribution in higher conduction bands. Additionally, by introducing an ultraviolet pulse to the fundamental laser field, the suppression of the harmonic minimum occurs as a result of heightened electron populations in higher conduction bands. This work sheds light on the harmonic emission originating from a solid with a two-atom basis.
Select
Ultrafast Fiber Laser Based on Tungsten Sulphoselenide Materials
Xiao-Chuan Meng, Lu Li, Nai-Zhang Sun, Ze Xue, Qi Liu, Han Ye, and Wen-Jun Liu
Chin. Phys. Lett. 2023, 40 (
12
): 124202 . DOI: 10.1088/0256-307X/40/12/124202
Abstract
HTML
PDF
(3882KB)
Tungsten sulphoselenide (WSSe) alloys, belonging to the transition metal dichalcogenide family, have attracted significant interest in the area of optoelectronics because of their unique optical and electronic properties. However, there has been a dearth of sufficient research on the saturable absorption features and ultrafast lasers applications. Herein, we fabricated a WSSe-microfiber saturable absorber (SA) based on WSSe nanosheets prepared by liquid exfoliation technique. The SA provided a saturation intensity of a modulation depth of 27.95% and a nonsaturable loss of 21.34%. To investigate the potential applications of WSSe in ultrafast photonics, the prepared WSSe-microfiber was incorporated into an Er-doped fiber laser ring cavity. The results demonstrated that the WSSe-based SA successfully generated mode-locking laser pulses with a remarkably short pulse width of 231 fs. Furthermore, the output power of this ultrafast fiber laser reached an impressive value of 15.68 mW. These findings provide valuable views into the unique features of WSSe alloys in the areas of ultrafast optics and develop recipes for SA in ultrafast fiber lasers.
First page
| Prev page |
Next page
|
Last page
Page 1 of 59, 1748 records