Chin. Phys. Lett.  2019, Vol. 36 Issue (2): 028501    DOI: 10.1088/0256-307X/36/2/028501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Carrier Dynamics Determined by Carrier-Phonon Coupling in InGaN/GaN Multiple Quantum Well Blue Light Emitting Diodes
Sheng Cao, Xiao-Ming Wu**, Jun-Lin Liu, Feng-Yi Jiang
National Institute of LED on Si Substrate, Nanchang University, Nanchang 330096
Cite this article:   
Sheng Cao, Xiao-Ming Wu, Jun-Lin Liu et al  2019 Chin. Phys. Lett. 36 028501
Download: PDF(541KB)   PDF(mobile)(530KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Phonon sidebands in the electrolumiescence (EL) spectra of InGaN/GaN multiple quantum well blue light emitting diodes are investigated. S-shaped injection current dependence of the energy spacing (ES) between the zero-phonon and first-order phonon-assisted luminescence lines is observed in a temperature range of 100–150 K. The S-shape is suppressed with increasing temperature from 100 to 150 K, and vanishes at temperature above 200 K. The S-shaped injection dependence of ES at low temperatures could be explained by the three stages of carrier dynamics related to localization states: (i) carrier relaxation from shallow into deep localization states, (ii) band filling of shallow and deep localization states, and (iii) carrier overflow from deep to shallow localization states and to higher energy states. The three stages show strong temperature dependence. It is proposed that the fast change of the carrier lifetime with temperature is responsible for the suppression of S-shaped feature. The proposed mechanisms reveal carrier recombination dynamics in the EL of InGaN/GaN MQWs at various injection current densities and temperatures.
Received: 16 August 2018      Published: 22 January 2019
PACS:  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  78.60.Fi (Electroluminescence)  
  78.67.De (Quantum wells)  
  71.38.-k (Polarons and electron-phonon interactions)  
Fund: Supported by the National Science Foundation for Young Scientists of China under Grant No 11604137, the Jiangxi Province Postdoctoral Science Foundation Funded Project under Grant No 2015KY32, and the State Key Program of Research and Development of China under Grant Nos 2016YFB040060 and 2016YFB0400601.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/2/028501       OR      https://cpl.iphy.ac.cn/Y2019/V36/I2/028501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sheng Cao
Xiao-Ming Wu
Jun-Lin Liu
Feng-Yi Jiang
[1]Nakamura S, Senoh M, Iwasa N and Nagahama S 1995 Jpn. J. Appl. Phys. Part. 2 34 L797
[2]Zhang J, Xiong C, Liu J, Quan Z, Wang L and Jiang F 2014 Appl. Phys. A 114 1049
[3]Chichibu S, Azuhata T, Sota T and Nakamura S 1996 Appl. Phys. Lett. 69 4188
[4]Chichibu S, Sota T, Wada K and Nakamura S 1998 J. Vac. Sci. Technol. B 16 2204
[5]Nakamura S 1998 Science 281 956
[6]Hopfield J J 1959 J. Phys. Chem. Solids 10 110
[7]Segall B and Mahan G D 1968 Phys. Rev. 171 935
[8]Smith M, Lin J Y, Jiang H X, Salvador A, Botchkarev A, Kim W and Morkoc H 1996 Appl. Phys. Lett. 69 2453
[9]Smith M, Lin J Y, Jiang H X, Khan A, Chen Q, Salvador A, Botchkarev A, Kim W and Morkoc H 1997 Appl. Phys. Lett. 70 2882
[10]Zhang X B, Taliercio T, Kolliakos S and Lefebvre P 2001 J. Phys.: Condens. Matter 13 7053
[11]Brener I, Olszakier M, Cohen E, Ehrenfreund E, Ron A and Pfeiffer L 1992 Phys. Rev. B 46 7927
[12]Xu S J, Liu W and Li M F 2000 Appl. Phys. Lett. 77 3376
[13]Xu S J, Li G Q, Xiong S J, Tong S Y, Che C M, Liu W and Li M F 2005 J. Chem. Phys. 122 244712
[14]Xu S J, Li G Q, Xiong S J and Che C M 2006 J. Appl. Phys. 99 073508
[15]Song D Y, Basavaraj M, Nikishin S A, Holtz M, Soukhoveev V, Usikov A and Dmitriev V 2006 J. Appl. Phys. 100 113504
[16]Pecharromán-Gallego R, Edwards P R, Martin R W and Watson I M 2002 Mater. Sci. Eng. B 93 94
[17]Tan L T, Martin R W, O'Donnell K P and Watson I M 2006 Appl. Phys. Lett. 89 101910
[18]Olaizola S M, Fan W H, Mowbray D J, Skolnick M S, Parbrook P J and Fox A M 2007 Superlattices Microstruct. 41 419
[19]Chen D, Luo Y, Wang L, Li H, Xi G, Jiang Y, Hao Z, Sun C and Han Y 2007 J. Appl. Phys. 101 053712
[20]Renwick P, Tang H, Bai J and Wang T 2012 Appl. Phys. Lett. 100 182105
[21]Mo C, Fang W, Pu Y, Liu H and Jiang F 2005 J. Cryst. Growth 285 312
[22]Xiong C, Jiang F, Fang W, Wang L, Mo C and Liu H 2007 J. Lumin. 122 185
[23]Wu X, Liu J, Xiong C, Zhang J, Quan Z, Mao Q and Jiang F 2013 J. Appl. Phys. 114 103102
[24]Agranovich V M and Maradudin A A 1982 Excitons (Amsterdam: North-Holland Publishing Company) vol 2 chap 5 p 177
[25]Cho Y H , Gainer G H, Fischer A J, Song J J, Keller S, Mishra U K and DenBaars S P 1998 Appl. Phys. Lett. 73 1370
[26]Feng S W , Cheng Y C , Chung Y Y , Yang C C, Lin Y S , Hsu C, Ma K J and Chyi J I 2002 J. Appl. Phys. 92 4441
[27]Lin T, Kuo H C, Jiang X D and Feng Z C 2017 Nanoscale Res. Lett. 12 137
[28]Mowbray D J, Kowalski O P, Skolnick M S, Hopkinson M and David J P R 1994 Superlattices Microstruct. 15 313
Related articles from Frontiers Journals
[1] Xinhuang Lin, Haotian Long, Shuo Ke, Yuyuan Wang, Ying Zhu, Chunsheng Chen, Changjin Wan, and Qing Wan. Indium-Gallium-Zinc-Oxide-Based Photoelectric Neuromorphic Transistors for Spiking Morse Coding[J]. Chin. Phys. Lett., 2022, 39(6): 028501
[2] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 028501
[3] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 028501
[4] Jin-Lei Lu, Chen Yue, Xuan-Zhang Li, Wen-Xin Wang, Hai-Qiang Jia, Hong Chen, Lu Wang. Numerical and Experimental Study on the Device Geometry Dependence of Performance of Heterjunction Phototransistors[J]. Chin. Phys. Lett., 2019, 36(10): 028501
[5] Guang-Yue Shen, Tian-Xiang Zheng, Bing-Cheng Du, Yang Lv, E Wu, Zhao-Hui Li, Guang Wu. Near-Range Large Field-of-View Three-Dimensional Photon-Counting Imaging with a Single-Pixel Si-Avalanche Photodiode[J]. Chin. Phys. Lett., 2018, 35(11): 028501
[6] Qing-feng Wu, Sheng Cao, Chun-lan Mo, Jian-li Zhang, Xiao-lan Wang, Zhi-jue Quan, Chang-da Zheng, Xiao-ming Wu, Shuan Pan, Guang-xu Wang, Jie Ding, Long-quan Xu, Jun-lin Liu, Feng-yi Jiang. Effects of Hydrogen Treatment in Barrier on the Electroluminescence of Green InGaN/GaN Single-Quantum-Well Light-Emitting Diodes with V-Shaped Pits Grown on Si Substrates[J]. Chin. Phys. Lett., 2018, 35(9): 028501
[7] Xiang Zhang, Yu-Dong Li, Lin Wen, Dong Zhou, Jie Feng, Lin-Dong Ma, Tian-Hui Wang, Yu-Long Cai, Zhi-Ming Wang, Qi Guo. Radiation Effects Due to 3MeV Proton Irradiations on Back-Side Illuminated CMOS Image Sensors[J]. Chin. Phys. Lett., 2018, 35(7): 028501
[8] Yin Tang, Qing Cai, Lian-Hong Yang, Ke-Xiu Dong, Dun-Jun Chen, Hai Lu, Rong Zhang, You-Dou Zheng. High-Gain N-Face AlGaN Solar-Blind Avalanche Photodiodes Using a Heterostructure as Separate Absorption and Multiplication Regions[J]. Chin. Phys. Lett., 2017, 34(1): 028501
[9] Xiao-Peng Lv, Hui Wang, Ling-Qiang Meng, Xiao-Fang Wei, Yong-Zhen Chen, Xiang-Bin Kong, Jian-Jun Liu, Jian-Xin Tang, Peng-Fei Wang, Ying Wang. High Efficiency and Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter[J]. Chin. Phys. Lett., 2016, 33(08): 028501
[10] LIU Fei, ZHOU Dong, LU Hai, CHEN Dun-Jun, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou. Passive Quenching Electronics for Geiger Mode 4H-SiC Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(12): 028501
[11] LIU Fei, YANG Sen, ZHOU Dong, LU Hai, ZHANG Rong, ZHENG You-Dou. Discrimination Voltage and Overdrive Bias Dependent Performance Evaluation of Passively Quenched SiC Single-Photon-Counting Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(08): 028501
[12] YUAN Li, WU Can, ZHANG Zhao-Hua, REN Tian-Ling. A Silicon-Based Positive-Intrinsic-Negative Photodetector Double Linear Array on a Thick Intrinsic Epitaxial Layer[J]. Chin. Phys. Lett., 2014, 31(05): 028501
[13] LI Lian-Bi, CHEN Zhi-Ming, REN Zhan-Qiang, GAO Zhan-Jun. Non-UV Photoelectric Properties of the Ni/n-Si/N+-SiC Isotype Heterostructure Schottky Barrier Photodiode[J]. Chin. Phys. Lett., 2013, 30(9): 028501
[14] LI Jian-Fei, HUANG Ze-Qiang, ZHANG Wen-Le, JIANG Hao. Large Active Area AlGaN Solar-Blind Schottky Avalanche Photodiodes with High Multiplication Gain[J]. Chin. Phys. Lett., 2013, 30(3): 028501
[15] YUE Ai-Wen, WANG Ren-Fan, XIONG Bing, SHI Jing. Fabrication of a 10 Gb/s InGaAs/InP Avalanche Photodiode with an AlGaInAs/InP Distributed Bragg Reflector[J]. Chin. Phys. Lett., 2013, 30(3): 028501
Viewed
Full text


Abstract