Chin. Phys. Lett.  2019, Vol. 36 Issue (1): 017402    DOI: 10.1088/0256-307X/36/1/017402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Disappearance of Superconductivity and a Concomitant Lifshitz Transition in Heavily Overdoped Bi$_2$Sr$_2$CuO$_{6}$ Superconductor Revealed by Angle-Resolved Photoemission Spectroscopy
Ying Ding1,2, Lin Zhao1**, Hong-Tao Yan1,2, Qiang Gao1,2, Jing Liu1,2, Cheng Hu1,2, Jian-Wei Huang1,2, Cong Li1,2, Yu Xu1,2, Yong-Qing Cai1,2, Hong-Tao Rong1,2, Ding-Song Wu1,2, Chun-Yao Song1,2, Hua-Xue Zhou1, Xiao-Li Dong1,2, Guo-Dong Liu1, Qing-Yan Wang1, Shen-Jin Zhang3, Zhi-Min Wang3, Feng-Feng Zhang3, Feng Yang3, Qin-Jun Peng3, Zu-Yan Xu3, Chuang-Tian Chen3, X. J. Zhou1,2,4,5**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
3Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
4Songshan Lake Materials Laboratory, Dongguan 523808
5Collaborative Innovation Center of Quantum Matter, Beijing 100871
Cite this article:   
Ying Ding, Lin Zhao, Hong-Tao Yan et al  2019 Chin. Phys. Lett. 36 017402
Download: PDF(1701KB)   PDF(mobile)(1681KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By partially doping Pb to effectively suppress the superstructure in single-layered cuprate Bi$_2$Sr$_2$CuO$_{6+\delta}$ (Pb-Bi2201) and annealing them in vacuum or in high pressure oxygen atmosphere, a series of high quality Pb-Bi2201 single crystals are obtained with $T_{\rm c}$ covering from 17 K to non-superconducting in the overdoped region. High resolution angle resolved photoemission spectroscopy measurements are carried out on these samples to investigate the evolution of the Fermi surface topology with doping in the normal state. Clear and complete Fermi surfaces are observed and quantitatively analyzed in all of these overdoped Pb-Bi2201 samples. A Lifshitz transition from hole-like Fermi surface to electron-like Fermi surface with increasing doping is observed at a doping level of $\sim$0.35. This transition coincides with the change that the sample undergoes superconducting-to-non-superconducting states. Our results reveal the emergence of an electron-like Fermi surface and the existence of a Lifshitz transition in heavily overdoped Bi2201 samples. This provides important information in understanding the connection between the disappearance of superconductivity and the Lifshitz transition in the overdoped region.
Received: 26 November 2018      Published: 25 December 2018
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  74.72.Dn  
  79.60.-i (Photoemission and photoelectron spectra)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0300300 and 2017YFA0302900, the Strategic Priority Research Program (B) of Chinese Academy of Sciences under Grant Nos XDB07020300 and XDB25000000, the National Basic Research Program of China under Grant No 2015CB921300, the National Natural Science Foundation of China under Grant Nos 11334010 and 11534007, and the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2017013.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/1/017402       OR      https://cpl.iphy.ac.cn/Y2019/V36/I1/017402
[1]Gurvitch M and Fiory A T 1987 Phys. Rev. Lett. 59 1337
[2]Hwang H Y et al 1994 Phys. Rev. Lett. 72 2636
[3]Harris J M et al 1995 Phys. Rev. Lett. 75 1391
[4]Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61
[5]Marshall D S et al 1996 Phys. Rev. Lett. 76 4841
[6]Norman M R, Ding H et al 1998 Nature 392 157
[7]Shen K M et al 2005 Science 307 901
[8]Kanigel A et al 2006 Nat. Phys. 2 447
[9]Lee W S et al 2007 Phys. Rev. B 75 195116
[10]Yang H B et al 2008 Nature 456 77
[11]Leyraud N D et al 2007 Nature 447 565
[12]Bangura A F et al 2008 Phys. Rev. Lett. 100 047004
[13]Yelland E A et al 2008 Phys. Rev. Lett. 100 047003
[14]Meng J Q et al 2009 Nature 462 335
[15]Chaterjee U et al 2011 Proc. Natl. Acad. Sci. USA 108 9346
[16]Keimer B et al 2015 Nature 518 179
[17]Manako T et al 1992 Phys. Rev. B 46 11019
[18]Mackenzie A P et al 1996 Phys. Rev. B 53 5848
[19]Zhao L et al 2010 Chin. Phys. Lett. 27 087401
[20]Zhou X J et al 2002 J. Electron Spectrosc. Relat. Phenom. 126 145
[21]Yoshida T et al 2006 Phys. Rev. B 74 224510
[22]Feng D L et al 2001 Phys. Rev. Lett. 86 5550
[23]Chuang Y D et al 2001 Phys. Rev. Lett. 87 117002
[24]Barnes S E and Maekawa S 2003 Phys. Rev. B 67 224513
[25]Liu G D et al 2008 Rev. Sci. Instrum. 79 023105
[26]Nakamae S et al 2003 Phys. Rev. B 68 100502
[27]Koitzsch A et al 2004 Phys. Rev. B 69 220505
[28]Nakamaya K et al 2006 Phys. Rev. B 74 054505
[29]Mans A et al 2006 Phys. Rev. Lett. 96 107007
[30]Lifshitz I M et al 1960 Sov. Phys. JETP 2 831
[31]Liu C et al 2010 Nat. Phys. 6 419
[32]Benhabib S et al 2015 Phys. Rev. Lett. 114 147001
[33]Shi X et al 2017 Nat. Commun. 8 14988
Related articles from Frontiers Journals
[1] Wenjing Liu, Heming Zha, Gen-Da Gu, Xiaoping Shen, Mao Ye, and Shan Qiao. Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2023, 40(3): 017402
[2] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 017402
[3] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 017402
[4] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 017402
[5] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 017402
[6] Jiao-Jiao Song, Yang Luo, Chen Zhang, Qi-Yi Wu, Tomasz Durakiewicz, Yasmine Sassa, Oscar Tjernberg, Martin Månsson, Magnus H. Berntsen, Yin-Zou Zhao, Hao Liu, Shuang-Xing Zhu, Zi-Teng Liu, Fan-Ying Wu, Shu-Yu Liu, Eric D. Bauer, Ján Rusz, Peter M. Oppeneer, Ya-Hua Yuan, Yu-Xia Duan, and Jian-Qiao Meng. The 4$f$-Hybridization Strength in Ce$_m$$M$$_n$In$_{3m+2n}$ Heavy-Fermion Compounds Studied by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2021, 38(10): 017402
[7] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 017402
[8] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 017402
[9] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 017402
[10] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 017402
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 017402
[12] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 017402
[13] Qiang Gao, Lin Zhao, Cheng Hu, Hongtao Yan, Hao Chen, Yongqing Cai, Cong Li, Ping Ai, Jing Liu, Jianwei Huang, Hongtao Rong, Chunyao Song, Chaohui Yin, Qingyan Wang, Yuan Huang, Guo-Dong Liu, Zu-Yan Xu, and Xing-Jiang Zhou. Electronic Evolution from the Parent Mott Insulator to a Superconductor in Lightly Hole-Doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2020, 37(8): 017402
[14] Ya-Ting Jia, Jian-Fa Zhao, Si-Jia Zhang, Shuang Yu, Guang-Yang Dai, Wen-Min Li, Lei Duan, Guo-Qiang Zhao, Xian-Cheng Wang, Xu Zheng, Qing-Qing Liu, You-Wen Long, Zhi Li, Xiao-Dong Li, Hong-Ming Weng, Run-Ze Yu, Ri-Cheng Yu, Chang-Qing Jin. Superconductivity in Topological Semimetal $\theta$-TaN at High Pressure[J]. Chin. Phys. Lett., 2019, 36(8): 017402
[15] Ping Ai, Qiang Gao, Jing Liu, Yuxiao Zhang, Cong Li, Jianwei Huang, Chunyao Song, Hongtao Yan, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Xing-Jiang Zhou. Distinct Superconducting Gap on Two Bilayer-Split Fermi Surface Sheets in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor[J]. Chin. Phys. Lett., 2019, 36(6): 017402
Viewed
Full text


Abstract