CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Direct Microwave Synthesis of 11-Type Fe(Te,Se) Polycrystalline Superconductors with Enhanced Critical Current Density |
Bo-Jin Pan1,2, Kang Zhao1,2, Tong Liu1,2, Bin-Bin Ruan1,2, Shuai Zhang1,2, Gen-Fu Chen1,2,3, Zhi-An Ren1,2,3** |
1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049 3Collaborative Innovation Center of Quantum Matter, Beijing 100190
|
|
Cite this article: |
Bo-Jin Pan, Kang Zhao, Tong Liu et al 2019 Chin. Phys. Lett. 36 017401 |
|
|
Abstract We report a direct microwave synthesis method for the preparation of 11-type high quality Fe(Te,Se) polycrystalline superconductors. The bulk samples are rapidly synthesized under the microwave irradiation during several minutes, with a subsequent annealing process at 400$^{\circ}\!$C. The samples exhibit a nearly single phase of the tetragonal PbO-type crystal structure with minor impurities. Morphology characterization shows high density, tight grain connectivity and large grain sizes around 100 μm with small cavities inside the sample. Resistivity and magnetization measurements both show similar superconducting transitions above 14 K. The magnetic hysteresis measurements display broad and symmetric loops without magnetic background, and a high critical current density $J_{\rm c}$ about $1.2\times10^{4}$ A/cm$^{2}$ at 2 K and 7 T is estimated by the Bean model. Compared with the solid-state reaction synthesized samples, these superconducting bulks from microwave-assisted synthesis are possibly free of the interstitial Fe due to smaller $c$-axis, higher $T_{\rm c}$ in magnetic transitions, better $M$–$H$ loops without magnetic background and greatly enhanced $J_{\rm c}$, and are promising as raw materials for the non-toxic Fe-based superconducting wires for large currents and high field applications.
|
|
Received: 01 November 2018
Published: 25 December 2018
|
|
PACS: |
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
74.25.-q
|
(Properties of superconductors)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11474339 and 11774402, the National Basic Research Program of China under Grant No 2016YFA0300301, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB25000000, and the Youth Innovation Promotion Association of Chinese Academy of Sciences. |
|
|
[1] | Kamihara Y et al 2008 J. Am. Chem. Soc. 130 3296 | [2] | Ren Z A et al 2008 Chin. Phys. Lett. 25 2215 | [3] | Rotter M et al 2008 Phys. Rev. Lett. 101 107006 | [4] | Chen X H et al 2008 Nature 453 761 | [5] | Hsu F C et al 2008 Proc. Natl. Acad. Sci. USA 105 14262 | [6] | Wang X C et al 2008 Solid State Commun. 148 538 | [7] | Yakita H et al 2014 J. Am. Chem. Soc. 136 846 | [8] | Chen D Y et al 2016 Chin. Phys. Lett. 33 067402 | [9] | Lu X F et al 2014 Phys. Rev. B 89 020507 | [10] | Guo J G et al 2010 Phys. Rev. B 82 180520 | [11] | Yu J et al 2017 Sci. Bull. 62 218 | [12] | Wang X C et al 2017 Chin. Phys. Lett. 34 077401 | [13] | Hosono H et al 2018 Mater. Today 21 278 | [14] | Pallecchi I et al 2015 Supercond. Sci. Technol. 28 114005 | [15] | Kida T et al 2009 J. Phys. Soc. Jpn. 78 113701 | [16] | Katase T et al 2011 Nat. Commun. 2 409 | [17] | Zhang X P et al 2017 IEEE Trans. Appl. Supercond. 27 7300705 | [18] | Zhang X P and Ma Y W 2013 Chin. Sci. Bull. 58 986 | [19] | Pyon S et al 2018 Supercond. Sci. Technol. 31 055016 | [20] | Wang Q Y et al 2012 Chin. Phys. Lett. 29 037402 | [21] | He S L et al 2013 Nat. Mater. 12 605 | [22] | Mizuguchi Y et al 2009 Appl. Phys. Express 2 083004 | [23] | Jia J F 2015 Sci. Bull. 60 1368 | [24] | Dong C H et al 2013 Chin. Phys. B 22 087401 | [25] | Si W D et al 2013 Nat. Commun. 4 1347 | [26] | Ozaki T et al 2012 J. Appl. Phys. 111 013912 | [27] | Mizuguchi Y et al 2011 Supercond. Sci. Technol. 24 125003 | [28] | Li X et al 2016 J. Supercond. Novel Magn. 29 1755 | [29] | Gao Z S et al 2011 Supercond. Sci. Technol. 24 065022 | [30] | Feng J Q et al 2016 Mater. Lett. 170 31 | [31] | Yuan P S et al 2015 Supercond. Sci. Technol. 28 065009 | [32] | Li X et al 2015 Physica C 517 16 | [33] | Taen T et al 2009 Phys. Rev. B 80 092502 | [34] | Sun Y et al 2016 Sci. Rep. 6 32290 | [35] | Chen J T et al 2016 J. Phys. Soc. Jpn. 85 104714 | [36] | Vallance S R et al 2009 Adv. Mater. 21 4502 | [37] | Rybakov K I et al 2013 J. Am. Ceram. Soc. 96 1003 | [38] | Muir S W et al 2012 Mater. Res. Bull. 47 798 | [39] | Ding Q P et al 2011 Supercond. Sci. Technol. 24 075025 | [40] | Lim E H H, Tan K Y, Liew J Y C et al 2015 J. Supercond. Novel Magn. 28 2839 | [41] | Fedorchenko A V, Grechnev G E, Desnenko V A et al 2011 Low Temp. Phys. 37 83 | [42] | Sun Y, Tsuchiya Y, Yamada T et al 2014 Physica C 504 12 | [43] | Bean C P 1964 Rev. Mod. Phys. 36 31 | [44] | Ahn J H and Oh S 2013 Curr. Appl. Phys. 13 1096 | [45] | Liu G H, Xia T L, Yuan X Y et al 2016 Mater. Des. 106 349 | [46] | Li X, Shi X T, Wang J P et al 2015 J. Alloys Compd. 644 523 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|