Chin. Phys. Lett.  2019, Vol. 36 Issue (1): 017401    DOI: 10.1088/0256-307X/36/1/017401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Direct Microwave Synthesis of 11-Type Fe(Te,Se) Polycrystalline Superconductors with Enhanced Critical Current Density
Bo-Jin Pan1,2, Kang Zhao1,2, Tong Liu1,2, Bin-Bin Ruan1,2, Shuai Zhang1,2, Gen-Fu Chen1,2,3, Zhi-An Ren1,2,3**
1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049
3Collaborative Innovation Center of Quantum Matter, Beijing 100190
Cite this article:   
Bo-Jin Pan, Kang Zhao, Tong Liu et al  2019 Chin. Phys. Lett. 36 017401
Download: PDF(1074KB)   PDF(mobile)(1058KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a direct microwave synthesis method for the preparation of 11-type high quality Fe(Te,Se) polycrystalline superconductors. The bulk samples are rapidly synthesized under the microwave irradiation during several minutes, with a subsequent annealing process at 400$^{\circ}\!$C. The samples exhibit a nearly single phase of the tetragonal PbO-type crystal structure with minor impurities. Morphology characterization shows high density, tight grain connectivity and large grain sizes around 100 μm with small cavities inside the sample. Resistivity and magnetization measurements both show similar superconducting transitions above 14 K. The magnetic hysteresis measurements display broad and symmetric loops without magnetic background, and a high critical current density $J_{\rm c}$ about $1.2\times10^{4}$ A/cm$^{2}$ at 2 K and 7 T is estimated by the Bean model. Compared with the solid-state reaction synthesized samples, these superconducting bulks from microwave-assisted synthesis are possibly free of the interstitial Fe due to smaller $c$-axis, higher $T_{\rm c}$ in magnetic transitions, better $M$–$H$ loops without magnetic background and greatly enhanced $J_{\rm c}$, and are promising as raw materials for the non-toxic Fe-based superconducting wires for large currents and high field applications.
Received: 01 November 2018      Published: 25 December 2018
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  74.70.Xa (Pnictides and chalcogenides)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.25.-q (Properties of superconductors)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11474339 and 11774402, the National Basic Research Program of China under Grant No 2016YFA0300301, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB25000000, and the Youth Innovation Promotion Association of Chinese Academy of Sciences.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/1/017401       OR      https://cpl.iphy.ac.cn/Y2019/V36/I1/017401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bo-Jin Pan
Kang Zhao
Tong Liu
Bin-Bin Ruan
Shuai Zhang
Gen-Fu Chen
Zhi-An Ren
[1]Kamihara Y et al 2008 J. Am. Chem. Soc. 130 3296
[2]Ren Z A et al 2008 Chin. Phys. Lett. 25 2215
[3]Rotter M et al 2008 Phys. Rev. Lett. 101 107006
[4]Chen X H et al 2008 Nature 453 761
[5]Hsu F C et al 2008 Proc. Natl. Acad. Sci. USA 105 14262
[6]Wang X C et al 2008 Solid State Commun. 148 538
[7]Yakita H et al 2014 J. Am. Chem. Soc. 136 846
[8]Chen D Y et al 2016 Chin. Phys. Lett. 33 067402
[9]Lu X F et al 2014 Phys. Rev. B 89 020507
[10]Guo J G et al 2010 Phys. Rev. B 82 180520
[11]Yu J et al 2017 Sci. Bull. 62 218
[12]Wang X C et al 2017 Chin. Phys. Lett. 34 077401
[13]Hosono H et al 2018 Mater. Today 21 278
[14]Pallecchi I et al 2015 Supercond. Sci. Technol. 28 114005
[15]Kida T et al 2009 J. Phys. Soc. Jpn. 78 113701
[16]Katase T et al 2011 Nat. Commun. 2 409
[17]Zhang X P et al 2017 IEEE Trans. Appl. Supercond. 27 7300705
[18]Zhang X P and Ma Y W 2013 Chin. Sci. Bull. 58 986
[19]Pyon S et al 2018 Supercond. Sci. Technol. 31 055016
[20]Wang Q Y et al 2012 Chin. Phys. Lett. 29 037402
[21]He S L et al 2013 Nat. Mater. 12 605
[22]Mizuguchi Y et al 2009 Appl. Phys. Express 2 083004
[23]Jia J F 2015 Sci. Bull. 60 1368
[24]Dong C H et al 2013 Chin. Phys. B 22 087401
[25]Si W D et al 2013 Nat. Commun. 4 1347
[26]Ozaki T et al 2012 J. Appl. Phys. 111 013912
[27]Mizuguchi Y et al 2011 Supercond. Sci. Technol. 24 125003
[28]Li X et al 2016 J. Supercond. Novel Magn. 29 1755
[29]Gao Z S et al 2011 Supercond. Sci. Technol. 24 065022
[30]Feng J Q et al 2016 Mater. Lett. 170 31
[31]Yuan P S et al 2015 Supercond. Sci. Technol. 28 065009
[32]Li X et al 2015 Physica C 517 16
[33]Taen T et al 2009 Phys. Rev. B 80 092502
[34]Sun Y et al 2016 Sci. Rep. 6 32290
[35]Chen J T et al 2016 J. Phys. Soc. Jpn. 85 104714
[36]Vallance S R et al 2009 Adv. Mater. 21 4502
[37]Rybakov K I et al 2013 J. Am. Ceram. Soc. 96 1003
[38]Muir S W et al 2012 Mater. Res. Bull. 47 798
[39]Ding Q P et al 2011 Supercond. Sci. Technol. 24 075025
[40]Lim E H H, Tan K Y, Liew J Y C et al 2015 J. Supercond. Novel Magn. 28 2839
[41]Fedorchenko A V, Grechnev G E, Desnenko V A et al 2011 Low Temp. Phys. 37 83
[42]Sun Y, Tsuchiya Y, Yamada T et al 2014 Physica C 504 12
[43]Bean C P 1964 Rev. Mod. Phys. 36 31
[44]Ahn J H and Oh S 2013 Curr. Appl. Phys. 13 1096
[45]Liu G H, Xia T L, Yuan X Y et al 2016 Mater. Des. 106 349
[46]Li X, Shi X T, Wang J P et al 2015 J. Alloys Compd. 644 523
Related articles from Frontiers Journals
[1] Xiaolei Yi, Xiangzhuo Xing, Yan Meng, Nan Zhou, Chunlei Wang, Yue Sun, and Zhixiang Shi. Anomalous Second Magnetization Peak in 12442-Type RbCa$_2$Fe$_4$As$_4$F$_2$ Superconductors[J]. Chin. Phys. Lett., 2023, 40(2): 017401
[2] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Erratum: Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs [Chin. Phys. Lett. 39, 127501 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 017401
[3] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs[J]. Chin. Phys. Lett., 2022, 39(12): 017401
[4] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 017401
[5] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 017401
[6] Shuo Li, Shuo Han, Shaohua Yan, Yi Cui, Le Wang, Shanmin Wang, Shanshan Chen, Hechang Lei, Feng Yuan, Jinshan Zhang, and Weiqiang Yu. Pressure-Induced Superconductivity in Flat-Band Kagome Compounds Pd$_3$P$_2$(S$_{1-x}$Se$_x$)$_8$[J]. Chin. Phys. Lett., 2022, 39(6): 017401
[7] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 017401
[8] Ziqin Yang, Shichun Huang, Yuan He, Xiangyang Lu, Hao Guo, Chunlong Li, Xiaofei Niu, Pingran Xiong, Yukun Song, Andong Wu, Bin Xie, Zhiming You, Qingwei Chu, Teng Tan, Feng Pan, Ming Lu, Didi Luo, Junhui Zhang, Shenghu Zhang, and Wenlong Zhan. Low-Temperature Baking Effect of the Radio-Frequency Nb$_{3}$Sn Thin Film Superconducting Cavity[J]. Chin. Phys. Lett., 2021, 38(9): 017401
[9] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 017401
[10] Yi Cui, Cong Li, Qing Li, Xiyu Zhu, Ze Hu, Yi-feng Yang, Jinshan Zhang, Rong Yu, Hai-Hu Wen, and Weiqiang Yu. NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$[J]. Chin. Phys. Lett., 2021, 38(6): 017401
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 017401
[12] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 017401
[13] Qiong Wu, Huaxue Zhou, Yanling Wu, Lili Hu, Shunli Ni, Yichao Tian, Fei Sun, Fang Zhou, Xiaoli Dong, Zhongxian Zhao, and Jimin Zhao. Ultrafast Quasiparticle Dynamics and Electron-Phonon Coupling in (Li$_{0.84}$Fe$_{0.16}$)OHFe$_{0.98}$Se[J]. Chin. Phys. Lett., 2020, 37(9): 017401
[14] Kang Zhao, Qing-Ge Mu, Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Tong Liu, Bo-Jin Pan, Shuai Zhang, Gen-Fu Chen, and Zhi-An Ren. A New Quasi-One-Dimensional Ternary Molybdenum Pnictide Rb$_{2}$Mo$_{3}$As$_{3}$ with Superconducting Transition at 10.5 K[J]. Chin. Phys. Lett., 2020, 37(9): 017401
[15] Shuai Zhang, Yiyan Wang, Chaoyang Ma, Wenliang Zhu, Zhian Ren, Lei Shan, and Genfu Chen. Superconductivity at the Normal Metal/Dirac Semimetal Cd$_3$As$_2$ Interface[J]. Chin. Phys. Lett., 2020, 37(7): 017401
Viewed
Full text


Abstract