Chin. Phys. Lett.  2018, Vol. 35 Issue (12): 123701    DOI: 10.1088/0256-307X/35/12/123701
ATOMIC AND MOLECULAR PHYSICS |
Sub-Doppler Laser Cooling of $^{23}$Na in Gray Molasses on the $D_{2}$ Line
Zhenlian Shi1,2, Ziliang Li1,2, Pengjun Wang1,2**, Zengming Meng1,2, Lianghui Huang1,2, Jing Zhang1,2**
1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-electronics, Shanxi University, Taiyuan 030006
2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006
Cite this article:   
Zhenlian Shi, Ziliang Li, Pengjun Wang et al  2018 Chin. Phys. Lett. 35 123701
Download: PDF(730KB)   PDF(mobile)(716KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report on the efficient gray molasses cooling of sodium atoms using the $D_{2}$ optical transition at 589.1 nm. Thanks to the hyperfine split about 6${\it \Gamma}$ between $|F'=2\rangle$ and $|F'=3\rangle$ in the excited state 3$^{2}P_{3/2}$, this atomic transition is effective for the gray molasses cooling mechanism. Using this cooling technique, the atomic sample in $F=2$ ground manifold is cooled from 700 $\mu$K to 56 $\mu$K in 3.5 ms. We observe that the loading efficiency into magnetic trap is increased due to the lower temperature and high phase space density of atomic cloud after gray molasses. This technique offers a promising route for the fast cooling of the sodium atoms in the $F=2$ state.
Received: 14 September 2018      Published: 23 November 2018
PACS:  37.10.De (Atom cooling methods)  
  37.10.Gh (Atom traps and guides)  
  67.85.-d (Ultracold gases, trapped gases)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0301602, the National Natural Science Foundation of China under Grant Nos 11474188 and 11704234, the National Key Research and Development Program of China under Grant No 2018YFA0307601, the Fund for Shanxi '1331 Project' Key Subjects Construction, and the Program of Youth Sanjin Scholar.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/12/123701       OR      https://cpl.iphy.ac.cn/Y2018/V35/I12/123701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhenlian Shi
Ziliang Li
Pengjun Wang
Zengming Meng
Lianghui Huang
Jing Zhang
[1]Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[2]Windpassinger P and Sengstock K 2013 Rep. Prog. Phys. 76 086401
[3]Eckardt A 2017 Rev. Mod. Phys. 89 011004
[4]Gross C and Bloch I 2017 Science 357 995
[5]Qi W, Li Z H and Liang Z X 2018 Chin. Phys. Lett. 35 010301
[6]Galitski V and Spielman I B 2013 Nature 494 49
[7]Goldman N, Juzeliūnas G, Öhberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401
[8]Zhai H 2015 Rep. Prog. Phys. 78 026001
[9]Liu X J, Hu H and Pu H 2015 Chin. Phys. B 24 050502
[10]Zhang J, Hu H, Liu X and Pu H 2014 Annu. Rev. Cold At. Mol. 2 81
[11]Chai X D, Yu Z F, Zhang A X and Xue J K 2017 Chin. Phys. Lett. 34 090301
[12]Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049
[13]Xu R D, Liu W L, Wu J Z, Ma J, Xiao L T and Jia S T 2016 Acta Phys. Sin. 65 093201 (in Chinese)
[14]Moses S A, Covey J P, Miecnikowski M T, Jin D S and Ye J 2017 Nat. Phys. 13 13
[15]Cheuk L W, Nichols M A, Okan M, Gersdorf T, Ramasesh V V, Bakr W S, Lompe T and Zwierlein M W 2015 Phys. Rev. Lett. 114 193001
[16]Parsons M F, Huber F, Mazurenko A, Chiu C S, Setiawan W, Wooley-Brown K, Blatt S and Greiner M 2015 Phys. Rev. Lett. 114 213002
[17]Omran A, Boll M, Hilker T A, Kleinlein K, Salomon G, Bloch I and Gross C 2015 Phys. Rev. Lett. 115 263001
[18]Haller E, Hudson J, Kelly A, Cotta D A, Peaudecerf B, Bruce G D and Kuhr S 2015 Nat. Phys. 11 738
[19]Edge G J A, Anderson R, Jervis D, Mckay D C, Day R, Trotzky S and Thywissen J H 2015 Phys. Rev. A 92 063406
[20]Hu J, Urvoy A, Vendeiro Z, Crépel V, Chen W and Vuletić V 2017 Science 358 1078
[21]Dalibard J and Cohen-Tannoudji C 1989 J. Opt. Soc. Am. B 6 2023
[22]Lett P D, Phillips W D, Rolston S L, Tanner C E, Watts R N and Westbrook C I 1989 J. Opt. Soc. Am. B 6 2084
[23]Weiss D S, Riis E, Shevy Y, Ungar P J and Chu S 1989 J. Opt. Soc. Am. B 6 2072
[24]Aspect A, Arimondo E, Kaiser R, Vansteenkiste N and Cohen-Tannoudji C 1988 Phys. Rev. Lett. 61 826
[25]Grynberg G and Courtois J Y 1994 Europhys. Lett. 27 41
[26]Boiron D, Triché C, Meacher D R, Verkerk P and Grynberg G 1995 Phys. Rev. A 52 R3425(R)
[27]Boiron D, Michaud A, Lemonde P, Castin Y, Salomon C, Weyers S, Szymaniec K, Cognet L and Clairon A 1996 Phys. Rev. A 53 R3734(R)
[28]Triché C, Verkerk P and Grynberg G 1999 Eur. Phys. J. D 5 225
[29]Esslinger T, Ritsch H, Weidemüller M, Sander F, Hemmerich A and Hänsch T W 1996 Opt. Lett. 21 991
[30]Fernandes D R, Sievers F, Kretzschmar N, Wu S, Salomon C and Chevy F 2012 Europhys. Lett. 100 63001
[31]Sievers F, Kretzschmar N, Fernandes D R, Suchet D, Rabinovic M, Wu S, Parker C V, Khaykovich L, Salomon C and Chevy F 2015 Phys. Rev. A 91 023426
[32]Grier A T, Ferrier-Barbut I, Rem B S, Delehaye M, Khaykovich L, Chevy F and Salomon C 2013 Phys. Rev. A 87 063411
[33]Salomon G, Fouché L, Wang P, Aspect A, Bouyer P and Bourdel T 2013 Europhys. Lett. 104 63002
[34]Nath D, Easwaran R K, Rajalakshmi G and Unnikrishnan C S 2013 Phys. Rev. A 88 053407
[35]Burchianti A, Valtolina G, Seman J A, Pace E, De Pas M, Inguscio M, Zaccanti M and Roati G 2014 Phys. Rev. A 90 043408
[36]Colzi G, Durastante G, Fava E, Serafini S, Lamporesi G and Ferrari G 2016 Phys. Rev. A 93 023421
[37]Chen H, Yao X, Wu Y, Liu X, Wang X, Wang Y, Chen Y and Pan J 2016 Phys. Rev. A 94 033408
[38]Bouton Q, Chang R, Hoendervanger A L, Nogrette F, Aspect A, Westbrook C I and Clément D 2015 Phys. Rev. A 91 061402
[39]Bruce G D, Haller E, Peaudecerf B, Cotta D A, Andia M, Wu S, Johnson M Y H, Lovett B W and Kuhr S 2017 J. Phys. B 50 095002
[40]Rosi S, Burchianti A, Conclave S, Naik D S, Roati G, Fort C and Minardi F 2018 Sci. Rep. 8 1301
[41]Donley E A, Heavner T P, Levi F, Tataw M O and Jefferts S R 2005 Rev. Sci. Instrum. 76 063112
[42]Imai H, Akatsuka T, Ode T and Morinaga A 2012 Phys. Rev. A 85 013633
[43]Tanaka H, Imai H, Furuta K, Kato Y, Tashiro S, Abe M, Tajima R and Morinaga A 2007 Jpn. J. Appl. Phys. 46 L492
Related articles from Frontiers Journals
[1] Zhu Ma, Chengyin Han, Xunda Jiang, Ruihuan Fang, Yuxiang Qiu, Minhua Zhao, Jiahao Huang, Bo Lu, and Chaohong Lee. Production of $^{87}$Rb Bose–Einstein Condensate in an Asymmetric Crossed Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(10): 123701
[2] Xiang-Chuan Yan, Da-Li Sun, Lu Wang, Jing Min, Shi-Guo Peng, and Kai-Jun Jiang. Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(5): 123701
[3] Yadong Wu, Zengming Meng, Kai Wen, Chengdong Mi, Jing Zhang, and Hui Zhai. Active Learning Approach to Optimization of Experimental Control[J]. Chin. Phys. Lett., 2020, 37(10): 123701
[4] Wei Qi, Ming-Cheng Liang, Han Zhang, Yu-Dong Wei, Wen-Wei Wang, Xu-Jie Wang, Xibo Zhang. Experimental Realization of Degenerate Fermi Gases of $^{87}$Sr Atoms with 10 or Two Spin Components[J]. Chin. Phys. Lett., 2019, 36(9): 123701
[5] Tian-You Gao, Dong-Fang Zhang, Ling-Ran Kong, Rui-Zong Li, Kai-Jun Jiang. Observation of Atomic Dynamic Behaviors in the Evaporative Cooling by In-Situ Imaging the Plugged Hole of Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(8): 123701
[6] Jiang-Ling Yang, Yun Long, Wei-Wei Gao, Lan Jin, Zhan-Chun Zuo, Ru-Quan Wang. Enhanced Loading of $^{40}$K from Natural Abundance Potassium Source with a High Performance 2D$^{+}$ MOT[J]. Chin. Phys. Lett., 2018, 35(3): 123701
[7] Xiu-Mei Wang, Yan-Ling Meng, Ya-Ning Wang, Jin-Yin Wan, Ming-Yuan Yu, Xin Wang, Ling Xiao, Tang Li, Hua-Dong Cheng, Liang Liu. Dick Effect in the Integrating Sphere Cold Atom Clock[J]. Chin. Phys. Lett., 2017, 34(6): 123701
[8] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 123701
[9] Dong-Fang Zhang, Tian-You Gao, Ling-Ran Kong, Kai Li, Kai-Jun Jiang. Production of Rubidium Bose–Einstein Condensate in an Optically Plugged Magnetic Quadrupole Trap[J]. Chin. Phys. Lett., 2016, 33(07): 123701
[10] Lin Li, Qiu-Zhi Qu, Bin Wang, Tang Li, Jian-Bo Zhao, Jing-Wei Ji, Wei Ren, Xin Zhao, Mei-Feng Ye, Yuan-Yuan Yao, De-Sheng Lü, Liang Liu. Initial Tests of a Rubidium Space Cold Atom Clock[J]. Chin. Phys. Lett., 2016, 33(06): 123701
[11] YU Wei-Wei, YU Rong-Mei, CHENG Yong-Jun. Tune-Out Wavelengths for the Rb Atom[J]. Chin. Phys. Lett., 2015, 32(12): 123701
[12] ZHANG Feng, LONG Yun, YANG Jiang-Ling, MA Guo-Qiang, YIN Ji-Ping, WANG Ru-Quan. High-Performance Sodium Bose–Einstein Condensate Apparatus with a Hybrid Trap and Long-Distance Magnetic Transfer[J]. Chin. Phys. Lett., 2015, 32(12): 123701
[13] WANG Qiang, LIN Yi-Ge, GAO Fang-Lin, LI Ye, LIN Bai-Ke, MENG Fei, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun. A Longitudinal Zeeman Slower Based on Ring-Shaped Permanent Magnets for a Strontium Optical Lattice Clock[J]. Chin. Phys. Lett., 2015, 32(10): 123701
[14] LI Wen-Fang, DU Jin-Jin, WEN Rui-Juan, LI Gang, ZHANG Tian-Cai. Trapping and Cooling of Single Atoms in an Optical Microcavity by a Magic-Wavelength Dipole Trap[J]. Chin. Phys. Lett., 2015, 32(10): 123701
[15] ZHENG Ben-Chang, CHENG Hua-Dong, MENG Yan-Ling, XIAO Ling, WAN Jin-Yin, LIU Liang. Observation of Faraday Rotation in Cold Atoms in an Integrating Sphere[J]. Chin. Phys. Lett., 2014, 31(07): 123701
Viewed
Full text


Abstract