Chin. Phys. Lett.  2018, Vol. 35 Issue (11): 114202    DOI: 10.1088/0256-307X/35/11/114202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser
Lu Li1,3, Rui-Dong Lv2, Si-Cong Liu2, Zhen-Dong Chen2, Jiang Wang2, Yong-Gang Wang2, Wei Ren1**
1School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121
2School of Physics and information Technology, Shaanxi Normal University, Xi'an 710119
3Shaanxi Key Laboratory of Information Communication Network and Security, Xi'an University of Posts and Telecommunications, Xi'an 710121
Cite this article:   
Lu Li, Rui-Dong Lv, Si-Cong Liu et al  2018 Chin. Phys. Lett. 35 114202
Download: PDF(1432KB)   PDF(mobile)(1421KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the reduced graphene oxide (rGO) as a saturable absorber (SA) in an Er-doped fiber (EDF) laser cavity, we obtain the Q-switching operation. The rGO SA is prepared by depositing the GO on fluorine mica (FM) using the thermal reduction method. The modulation depth of rGO/FM is measured to be 3.2%. By incorporating the rGO/FM film into the EDF laser cavity, we obtain stable Q-switched pulses. The shortest pulse duration is 3.53 μs, and the maximum single pulse energy is 48.19 nJ. The long-term stability of working is well exhibited. The experimental results show that the rGO possesses potential photonics applications.
Received: 19 July 2018      Published: 23 October 2018
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Gd (Q-switching)  
  42.70.-a (Optical materials)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61705183, the Central University Special Fund Basic Research and Operating Expenses under Grant No GK201702005, the Natural Science Foundation of Shaanxi Province under Grant No 2017JM6091, and the Fundamental Research Funds for the Central Universities under Grant No 2017TS011.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/11/114202       OR      https://cpl.iphy.ac.cn/Y2018/V35/I11/114202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lu Li
Rui-Dong Lv
Si-Cong Liu
Zhen-Dong Chen
Jiang Wang
Yong-Gang Wang
Wei Ren
[1]Wang K P et al 2014 Nanoscale 6 10530
[2]Dhanabalan S C et al 2017 Adv. Sci. 4 1600305
[3]Manzeli S et al 2017 Nat. Rev. Mater. 2 17033
[4]Zhou S Y et al 2018 Chin. Phys. Lett. 35 066201
[5]Haiml M et al 2004 Appl. Phys. B 79 331
[6]Su L M et al 2012 Laser Phys. Lett. 9 120
[7]Liu X M et al 2018 Phys. Rev. Lett. 121 023905
[8]Chernysheva M et al 2017 J. Nanophoton. 6 1
[9]Chen H et al 2016 Opt. Express 24 16287
[10]Yang H R and Liu X M 2017 Appl. Phys. Lett. 110 171106
[11]Hasan T et al 2009 Adv. Mater. 21 3874
[12]Dhanabalan S C et al 2016 Nanoscale 8 6410
[13]Steinberg D et al 2018 Opt. Mater. Express 8 144
[14]Mao D et al 2016 Small 12 1489
[15]Guo Q B et al 2017 Adv. Mater. 29 1700754
[16]Liu W J et al 2018 Nanotechnology 29 174002
[17]Bao Q L et al 2011 Nat. Photon. 5 411
[18]Sun Z P et al 2010 ACS Nano 4 803
[19]Liu W J et al 2016 Sci. Rep. 6 19997
[20]Guo B et al 2016 IEEE J. Sel. Top. Quantum Electron. 22 8
[21]Guo B et al 2016 IEEE Photon. Technol. Lett. 28 323
[22]Ahmad H, Ismail M A, Sathiyan S et al 2017 Opt. Commun. 382 93
[23]Khazaeinezhad R, Kassani S H, Jeong H et al 2015 IEEE Photon. J. 7 1500109
[24]Lu S B, Miao L L, Guo Z N et al 2015 Opt. Express 23 11183
[25]Mu H, Lin S, Wang Z et al 2015 Adv. Opt. Mater. 3 1447
[26]Kong L C, Qin Z P, Xie G Q et al 2016 Laser Phys. Lett. 13 045801
[27]Liu W J, Zhu Y N, Liu M L et al 2018 Photon. Res. 6 220
[28]Ahmad H, Hassan H, Safaei R et al 2017 Opt. Commun. 400 55
[29]Luo Z Q, Wu D D, Xu B et al 2016 Nanoscale 8 1066
[30]Zhang L, Wang Y G, Yu H J et al 2011 Laser Phys. 21 2072
[31]Liu J, Wang Y G, Qu Z S et al 2012 Laser Phys. Lett. 9 15
[32]Zhao J Q, Zheng Z J, Ouyang D Q et al 2017 IEEE J. Sel. Top. Quantum Electron. 23 13
[33]Heidari B, Majdabadi A, Naji L et al 2018 Optik 156 104
[34]Sobon G, Sotor J, Jagiello J et al 2012 Appl. Phys. Lett. 101 241106
[35]Eda G, Fanchini G and Chhowalla M 2008 Nat. Nanotechnol. 3 270
[36]Chen W F, Yan L F and Bangal P R 2010 Carbon 48 1146
Related articles from Frontiers Journals
[1] Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen, Yue-Jia Xiao, Han Ye, and Wen-Jun Liu. Tunable Dual-Wavelength Fiber Laser in a Novel High Entropy van der Waals Material[J]. Chin. Phys. Lett., 2023, 40(2): 114202
[2] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 114202
[3] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 114202
[4] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 114202
[5] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 114202
[6] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 114202
[7] N. F. Zulkipli, M. Batumalay, F. S. M. Samsamnun, M. B. H. Mahyuddin, E. Hanafi, T. F. T. M. N. Izam, M. I. M. A. Khudus, S. W. Harun. Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(7): 114202
[8] R. Z. R. R. Rosdin, M. T. Ahmad, A. R. Muhammad, Z. Jusoh, H. Arof, S. W. Harun. Nanosecond Pulse Generation with Silver Nanoparticle Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(5): 114202
[9] Gen Li, Yong Zhou, Shu-Jie Li, PeiJun Yao, Wei-qing Gao, Chun Gu, Li-Xin Xu. Synchronously Pumped Mode-Locked 1.89μm Tm-Doped Fiber Laser with High Detuning Toleration[J]. Chin. Phys. Lett., 2018, 35(11): 114202
[10] M. F. M. Rusdi, M. B. H. Mahyuddin, A. A. Latiff , H. Ahmad, S. W. Harun. Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(10): 114202
[11] Guan Wang, Lixin Xu, Chun Gu. Passive, Stable and Order-Adjustable SBS Q-Switching Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(8): 114202
[12] Qi-Rong Xiao, Jia-Ding Tian, Yu-Sheng Huang, Xue-Jiao Wang, Ze-Hui Wang, Dan Li, Ping Yan, Ma-Li Gong. Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3kW[J]. Chin. Phys. Lett., 2018, 35(5): 114202
[13] Lei Zhao, Pei-Jun Yao, Chun Gu, Li-Xin Xu. Raman-Assisted Passively Mode-Locked Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(4): 114202
[14] A. Nady, M. F. Baharom, A. A. Latiff, S. W. Harun. Mode-Locked Erbium-Doped Fiber Laser Using Vanadium Oxide as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(4): 114202
[15] Yue-e Chen, Yun-kai Zhou, De-wang Yang, Wei Yan, Yong Wang. A Temperature-Insensitive Amplified Spontaneous Emission Broadband Source Based on Er-Doped Fiber[J]. Chin. Phys. Lett., 2018, 35(4): 114202
Viewed
Full text


Abstract