FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser |
Lu Li1,3, Rui-Dong Lv2, Si-Cong Liu2, Zhen-Dong Chen2, Jiang Wang2, Yong-Gang Wang2, Wei Ren1** |
1School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121 2School of Physics and information Technology, Shaanxi Normal University, Xi'an 710119 3Shaanxi Key Laboratory of Information Communication Network and Security, Xi'an University of Posts and Telecommunications, Xi'an 710121
|
|
Cite this article: |
Lu Li, Rui-Dong Lv, Si-Cong Liu et al 2018 Chin. Phys. Lett. 35 114202 |
|
|
Abstract Using the reduced graphene oxide (rGO) as a saturable absorber (SA) in an Er-doped fiber (EDF) laser cavity, we obtain the Q-switching operation. The rGO SA is prepared by depositing the GO on fluorine mica (FM) using the thermal reduction method. The modulation depth of rGO/FM is measured to be 3.2%. By incorporating the rGO/FM film into the EDF laser cavity, we obtain stable Q-switched pulses. The shortest pulse duration is 3.53 μs, and the maximum single pulse energy is 48.19 nJ. The long-term stability of working is well exhibited. The experimental results show that the rGO possesses potential photonics applications.
|
|
Received: 19 July 2018
Published: 23 October 2018
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 61705183, the Central University Special Fund Basic Research and Operating Expenses under Grant No GK201702005, the Natural Science Foundation of Shaanxi Province under Grant No 2017JM6091, and the Fundamental Research Funds for the Central Universities under Grant No 2017TS011. |
|
|
[1] | Wang K P et al 2014 Nanoscale 6 10530 | [2] | Dhanabalan S C et al 2017 Adv. Sci. 4 1600305 | [3] | Manzeli S et al 2017 Nat. Rev. Mater. 2 17033 | [4] | Zhou S Y et al 2018 Chin. Phys. Lett. 35 066201 | [5] | Haiml M et al 2004 Appl. Phys. B 79 331 | [6] | Su L M et al 2012 Laser Phys. Lett. 9 120 | [7] | Liu X M et al 2018 Phys. Rev. Lett. 121 023905 | [8] | Chernysheva M et al 2017 J. Nanophoton. 6 1 | [9] | Chen H et al 2016 Opt. Express 24 16287 | [10] | Yang H R and Liu X M 2017 Appl. Phys. Lett. 110 171106 | [11] | Hasan T et al 2009 Adv. Mater. 21 3874 | [12] | Dhanabalan S C et al 2016 Nanoscale 8 6410 | [13] | Steinberg D et al 2018 Opt. Mater. Express 8 144 | [14] | Mao D et al 2016 Small 12 1489 | [15] | Guo Q B et al 2017 Adv. Mater. 29 1700754 | [16] | Liu W J et al 2018 Nanotechnology 29 174002 | [17] | Bao Q L et al 2011 Nat. Photon. 5 411 | [18] | Sun Z P et al 2010 ACS Nano 4 803 | [19] | Liu W J et al 2016 Sci. Rep. 6 19997 | [20] | Guo B et al 2016 IEEE J. Sel. Top. Quantum Electron. 22 8 | [21] | Guo B et al 2016 IEEE Photon. Technol. Lett. 28 323 | [22] | Ahmad H, Ismail M A, Sathiyan S et al 2017 Opt. Commun. 382 93 | [23] | Khazaeinezhad R, Kassani S H, Jeong H et al 2015 IEEE Photon. J. 7 1500109 | [24] | Lu S B, Miao L L, Guo Z N et al 2015 Opt. Express 23 11183 | [25] | Mu H, Lin S, Wang Z et al 2015 Adv. Opt. Mater. 3 1447 | [26] | Kong L C, Qin Z P, Xie G Q et al 2016 Laser Phys. Lett. 13 045801 | [27] | Liu W J, Zhu Y N, Liu M L et al 2018 Photon. Res. 6 220 | [28] | Ahmad H, Hassan H, Safaei R et al 2017 Opt. Commun. 400 55 | [29] | Luo Z Q, Wu D D, Xu B et al 2016 Nanoscale 8 1066 | [30] | Zhang L, Wang Y G, Yu H J et al 2011 Laser Phys. 21 2072 | [31] | Liu J, Wang Y G, Qu Z S et al 2012 Laser Phys. Lett. 9 15 | [32] | Zhao J Q, Zheng Z J, Ouyang D Q et al 2017 IEEE J. Sel. Top. Quantum Electron. 23 13 | [33] | Heidari B, Majdabadi A, Naji L et al 2018 Optik 156 104 | [34] | Sobon G, Sotor J, Jagiello J et al 2012 Appl. Phys. Lett. 101 241106 | [35] | Eda G, Fanchini G and Chhowalla M 2008 Nat. Nanotechnol. 3 270 | [36] | Chen W F, Yan L F and Bangal P R 2010 Carbon 48 1146 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|