Chin. Phys. Lett.  2018, Vol. 35 Issue (10): 107801    DOI: 10.1088/0256-307X/35/10/107801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Pascal Realization by Comb-Spectral-Interferometry Based Refractometer
Li-Jun Yang, Yan Li**
State Key Laboratory of Precision Measurement Technology & Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084
Cite this article:   
Li-Jun Yang, Yan Li 2018 Chin. Phys. Lett. 35 107801
Download: PDF(799KB)   PDF(mobile)(791KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To break through the limitations of existing pressure standards, which rely on the gravity and toxic mercury, the national metrological institutes prefer a quantum-based pressure standard. Combining the ideal gas law with helium refractivity measurement, we demonstrate a scheme for the realization of the pressure unit. The refractometer is based on a spectral interferometry with an optical frequency comb and a double-spaced vacuum cell. Through fast Fourier transform of the spectral interferograms of the two beams propagating inside and outside the vacuum cell, the helium refractivity can be obtained with a combined standard uncertainty $u(n)$ of $2.9\times 10^{-9}$. Moreover, the final $u(p)$ is $\sim$$8.7\times 10^{-6}$ in a measurement range of several megapascals (MPa). Our apparatus is compact, fast (15 ms for one single measurement) and easy to handle. Furthermore, the measurement uncertainty will be improved to $\sim$$1\times 10^{-9}$ or lower if a VIPA-based spectrometer is used. The value of $u(p)$ will thus increase to $3\times 10^{-6}$ or better in several MPa.
Received: 02 June 2018      Published: 15 September 2018
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  07.60.Hv (Refractometers and reflectometers)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  42.25.Hz (Interference)  
  06.20.-f (Metrology)  
Fund: Supported by the National Key R&D Program of China under Grant No 2018YFF0212300, and the National Natural Science Foundation of China under Grant No 51575311.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/10/107801       OR      https://cpl.iphy.ac.cn/Y2018/V35/I10/107801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li-Jun Yang
Yan Li
[1]Tilford C R 1994 Metrologia 30 545
[2]Tilford C R 1987 Metrologia 24 121
[3]Mills I M, Mohr P J, Quinn T J et al 2006 Metrologia 43 227
[4]Milton M J T, Richard D and Fletcher N 2014 Metrologia 51 R21
[5]White D R and Fischer J 2015 Metrologia 52 S213
[6]Moldover M R 1998 J. Res. Natl. Inst. Stand. Technol. 103 167
[7]Hurly J J and Moldover M R 2000 J. Res. Natl. Inst. Stand. Technol. 105 667
[8]Lach G, Jeziorski B and Szalewicz K 2004 Phys. Rev. Lett. 92 233001
[9]Bich E, Hellmann R and Vogel E 2007 Mol. Phys. 105 3035
[10]Moldover M R and Mclinden M O 2010 J. Chem. Thermodyn. 42 1193
[11]Garberoglio G, Moldover M R et al 2011 J. Res. Natl. Inst. Stand. Technol. 116 729
[12]Gaiser C, Fellmuth B and Zandt T 2014 Int. J. Thermophys. 35 395
[13]Puchalski M, Piszczatowski K, Komasa J et al 2016 Phys. Rev. A 93 032515
[14]Buckley T J, Hamelin J and Moldover M R 2000 Rev. Sci. Instrum. 71 2914
[15]May E F, Pitre L, Mehl J B et al 2004 Rev. Sci. Instrum. 75 3307
[16]Schmidt J W, Gavioso R M, May E F et al 2007 Phys. Rev. Lett. 98 254504
[17]Born M and Wolf E 1980 Principles of Optics (Oxford: Pergamon)
[18]Egan P and Stone J A 2011 Appl. Opt. 50 3076
[19]Egan P F et al 2015 Opt. Lett. 40 3945
[20]Egan P F, Stone J A, Ricker J E et al 2016 Rev. Sci. Instrum. 87 053113
[21]Stone J A, Egan P F, Gerty D et al 2013 NCSL Int. Meas. 8 67
[22]Egan P F, Stone J A, Ricker J E et al 2017 Opt. Lett. 42 2944
[23]Cencek W, Przybytek M, Komasa J et al 2012 J. Chem. Phys. 136 224303
[24]Mohr P J, Newell D B and Taylor B N 2016 Rev. Mod. Phys. 88 035009
[25]Fischer J 2015 Metrologia 52 S364
[26]Fellmuth B et al 2016 Philos. Trans. R. Soc. A 374 20150037
[27]Yang L J, Zhang H Y, Li Y et al 2015 Opt. Express 23 33597
[28]Ciddor P E 1996 Appl. Opt. 35 1566
[29]Li T C 1995 Measurement 16 171
Related articles from Frontiers Journals
[1] Bing Suo, Xiao Zhang, Xinyu Jiang, Feng Yan, Zhengzhi Luo, and Yujin Chen. Atomically Dispersed Ni Single-Atoms Anchored on N-Doped Graphene Aerogels for Highly Efficient Electromagnetic Wave Absorption[J]. Chin. Phys. Lett., 2022, 39(4): 107801
[2] Guanying Xing, Weixian Zhao, Run Hu, and Xiaobing Luo. Spatiotemporal Modulation of Thermal Emission from Thermal-Hysteresis Vanadium Dioxide for Multiplexing Thermotronics Functionalities[J]. Chin. Phys. Lett., 2021, 38(12): 107801
[3] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 107801
[4] Xin Zhu, Feng Yan, Chunyan Li, Lihong Qi, Haoran Yuan, Yanfeng Liu, Chunling Zhu, and Yujin Chen. Nitrogen and Boron Co-Doped Carbon Nanotubes Embedded with Nickel Nanoparticles as Highly Efficient Electromagnetic Wave Absorbing Materials[J]. Chin. Phys. Lett., 2021, 38(1): 107801
[5] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 107801
[6] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 107801
[7] De-Ting Wang, Xian-Chao Wang, Xiao Zhang, Hao-Ran Yuan, Yu-Jin Chen. Tunable Dielectric Properties of Carbon Nanotube@Polypyrrole Core-Shell Hybrids by the Shell Thickness for Electromagnetic Wave Absorption[J]. Chin. Phys. Lett., 2020, 37(4): 107801
[8] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 107801
[9] Ju-Geng Li, Sen-Miao Yang, Xin Chen, Nai-Feng Zhuang, Qi-Biao Zhu, An-Hua Wu, Xian Lin, Guo-Hong Ma, Zuan-Ming Jin, Jian-Quan Yao. Temperature-Dependent Dielectric Characterization of Magneto-Optical Tb$_{3}$Sc$_{2}$Al$_{3}$O$_{12}$ Crystal Investigated by Terahertz Time-Domain Spectroscopy[J]. Chin. Phys. Lett., 2019, 36(4): 107801
[10] Hong-Wei Guo, Shun-Cai Zhao, Xiao-Jing Wei, Xin Li. Negative Refraction Index Manipulated by a Displaced Squeezed Fock State in the Mesoscopic Dissipative Left-Handed Transmission Line[J]. Chin. Phys. Lett., 2017, 34(3): 107801
[11] Lan-Qing Zhou, Yan-Bang Zhang, Teng-Fei Yan, Ying Li, Guo-Zhi Jia, Huai-Zhe Xu, Xin-Hui Zhang. Third-Order Nonlinear Optical Response near the Plasmon Resonance Band of Cu$_{2-x}$Se Nanocrystals[J]. Chin. Phys. Lett., 2017, 34(1): 107801
[12] Xiao-Wei Han, Lei Hou, Lei Yang, Zhi-Quan Wang, Meng-Meng Zhao, Wei Shi. Optical-Electrical Characteristics and Carrier Dynamics of Semi-Insulation GaAs by Terahertz Spectroscopic Technique[J]. Chin. Phys. Lett., 2016, 33(12): 107801
[13] Wei-Na Cui, Hong-Xia Li, Min Sun, Yong-Yuan Zhu. Coupling of Cutoff Modes in a Chain of Nonlinear Metallic Nanorods[J]. Chin. Phys. Lett., 2016, 33(12): 107801
[14] Meng Zhao, Chun-Hua Xu, Wei-Jie Hu, Wen-Jun Wang, Li-Wei Guo, Xiao-Long Chen. Observation of Two-Photon Absorption and Nonlinear Refraction in AlN[J]. Chin. Phys. Lett., 2016, 33(10): 107801
[15] Ming Zhou, Yuan Cai, Yao-Peng Li, Ding-Quan Liu. Durability of Ultra-Thin Silver Films and Silver–Gold Alloy Films under UV Irradiation[J]. Chin. Phys. Lett., 2016, 33(10): 107801
Viewed
Full text


Abstract