Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 077502    DOI: 10.1088/0256-307X/35/7/077502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Hybridization Induced Competitive Scanning Tunneling Interference Process into a Heavy Fermion System
Fu-Bin Yang**
Department of Physics, College of Computer, Civil Aviation Flight University of China, Guanghan 618307
Cite this article:   
Fu-Bin Yang 2018 Chin. Phys. Lett. 35 077502
Download: PDF(887KB)   PDF(mobile)(875KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically present the results for a scanning interference tunneling process between a metallic tip and a heavy fermion system. The density of states (DOS) and the differential conductance at zero temperature under different $c$–$f$ band hybridizations, as well as the interference Fano ratio strength in the heavy fermion system, are calculated. It is found that the hybridization strength gives rise to the splitting effect in the DOS around the Fermi energy. Also the interference Fano ratio strength makes the differential conductance characteristics strongly asymmetric.
Received: 04 December 2017      Published: 24 June 2018
PACS:  75.30.Mb (Valence fluctuation, Kondo lattice, and heavy-fermion phenomena)  
  74.55.+v (Tunneling phenomena: single particle tunneling and STM)  
  85.35.Ds (Quantum interference devices)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11547203.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/077502       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/077502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fu-Bin Yang
[1]Schmidt A R et al 2010 Nature 465 570
[2]Truncik C J S et al 2013 Nat. Commun. 4 2477
[3]Stewart G R 2006 Rev. Mod. Phys. 78 743
[4]Stewart G R 1984 Rev. Mod. Phys. 56 755
[5]Degiorgi L 1999 Rev. Mod. Phys. 71 687
[6]Coleman P et al 2007 Handbook of Magnetism and Advanced Magnetic Materials (New York: John Wiley & Sons) vol 1 p 35
[7]Yang Y f 2009 Phys. Rev. B 79 241107
van Dyke J S et al 2014 Proc. Natl. Acad. Sci. USA 111 11663
Baruselli P P and Vojta M 2016 Phys. Rev. B 93 235111
Zhang S f et al 2016 Phys. Rev. B 94 085124
[8]Fisk Z and Ott H R 2010 Superconductivity in New Materials (Netherlands: Elsevier) vol 4 p 45
[9]Mydosh J A and Oppeneer P M 2011 Rev. Mod. Phys. 83 1301
[10]Ernst S et al 2011 Nature 474 362
[11]Coleman P and Schofield A J 2005 Nature 433 226
[12]Aynajian P et al 2012 Nature 486 201
[13]Davis J C and Lee D H 2013 Proc. Natl. Acad. Sci. USA 110 17623
[14]Park W K et al 2009 J. Phys.: Conf. Ser. 150 052207
[15]Allan M P et al 2013 Nat. Phys. 9 468
[16]Aynajian P et al 2010 Proc. Natl. Acad. Sci. USA 107 10383
[17]Park W K et al 2012 Phys. Rev. Lett. 108 246403
[18]Zhang X H et al 2013 Phys. Rev. X 3 011011
[19]Rößlera S et al 2014 Proc. Natl. Acad. Sci. USA 111 4798
[20]van Dyke John S et al 2016 Phys. Rev. B 93 041107(R)
Yang F B and Wu H 2016 Commun. Theor. Phys. 65 629
[21]Lu X et al 2012 Phys. Rev. B 85 020402
[22]Zhou B et al 2013 Nat. Phys. 9 474
[23]Newns D M and Read N 1987 Adv. Phys. 36 799
[24]Read N and Newns D M 1983 J. Phys. C 16 3273
Coleman P 1984 Phys. Rev. B 29 3035
[25]Yang F, Cheng Y, Liu F and Chen X 2013 Appl. Phys. Lett. 103 033513
Yang F, Cheng Y, Liu F and Chen X 2013 Appl. Phys. Lett. 102 011911
[26]Zhu J, Julien J P, Dubi Y and Balatsky A V 2012 Phys. Rev. Lett. 108 186401
Yang F B, Wu ShQ and Sun W L 2007 Chin. Phys. Lett. 24 2056
Yan C H, Wu ShQ, Sun W L and Huang R 2008 Chin. Phys. B 17 296
[27]Madhavan V, Chen W, Jamneala T and Crommie M F 2001 Phys. Rev. B 64 165412
Figgins J and Morr D K 2010 Phys. Rev. Lett. 104 187202
[28]Maltseva M, Dzero M and Coleman P 2009 Phys. Rev. Lett. 103 206402
[29]Parka W K, Narasiwodeyara S M, Bauerb E D, Tobashb P H, Baumbachb R E, Ronningb F, Sarraob J L, Thompsonb J D and Greenea L H 2014 Philos. Mag. 94 3737
Dzero M, Sun K, Galitski V and Coleman P 2010 Phys. Rev. Lett. 104 106408
[30]Hamidian M H, Schmidta A R, Firmo I A, Allan M P, Bradleye P, Garrettf J D, Williamsg T J, Luke G M, Dubi Y, Balatsky A V and Davis J C 2011 Proc. Natl. Acad. Sci. USA 108 18233
Related articles from Frontiers Journals
[1] Neng Xie, Danqing Hu, Shu Chen, and Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 077502
[2] Huan Li, Zhi-Yong Wang, Xiao-Jun Zheng, Yu Liu, Yin Zhong. Magnetic and topological transitions in three-dimensional topological Kondo insulator[J]. Chin. Phys. Lett., 2018, 35(12): 077502
[3] Hui Liang, Shuai Zhang, Yu-Jia Long, Jun-Bao He, Jing Li, Xin-Min Wang, Zhi-An Ren, Gen-Fu Chen. Magnetic and Transport Properties of the Kondo Lattice Compound YbPtAs[J]. Chin. Phys. Lett., 2018, 35(7): 077502
[4] YUAN Yi-Zhe, LI Zheng-Zhong, XIAO Ming-Wen, XU Wang, XU Xiao-Hua. Two Types of Pressure Dependence of Residual Resistivity in Doped Kondo Insulators[J]. Chin. Phys. Lett., 2004, 21(7): 077502
[5] PI Li, ZHU Hong, XU Xiao-Jun, ZHANG Yu-Heng . Effect of the Substrate Orientation on the Transport Properties of La0.67Sr0.33MnO3 Epitaxial Films [J]. Chin. Phys. Lett., 2001, 18(1): 077502
[6] HOU Yu-min, JIN Duo, YANG Fu-ming, RAN Qi-ze, WANG Yu-peng, CHEN Zhao-jia, HE Yu-sheng. Magnetic Study on Kondo Semiconductor CeNiSn[J]. Chin. Phys. Lett., 1998, 15(2): 077502
[7] HOU Yu-rnin, JIN Duo, WANG Yu-peng, LUO Jian-lin, E. Nyeanchi, D. F. Brewer, A. L. Thomson. Electronic Properties of CeCuGa[J]. Chin. Phys. Lett., 1998, 15(1): 077502
[8] LIU Wu-ming, , ZHAO Hong-wei, PU Fu-ke,. Exactly Solved Anderson Lattice Model[J]. Chin. Phys. Lett., 1996, 13(3): 077502
[9] LIU Yu, ZHANG Guang-Ming, YU Lu. Pairing Symmetry of Heavy Fermion Superconductivity in the Two-Dimensional Kondo–Heisenberg Lattice Model[J]. Chin. Phys. Lett., 2014, 31(08): 077502
Viewed
Full text


Abstract