Chin. Phys. Lett.  2018, Vol. 35 Issue (6): 067301    DOI: 10.1088/0256-307X/35/6/067301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
An Anderson Impurity Interacting with the Helical Edge States in a Quantum Spin Hall Insulator
Ru Zheng, Rong-Qiang He**, Zhong-Yi Lu**
Department of Physics, Renmin University of China, Beijing 100872
Cite this article:   
Ru Zheng, Rong-Qiang He, Zhong-Yi Lu 2018 Chin. Phys. Lett. 35 067301
Download: PDF(702KB)   PDF(mobile)(712KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the natural orbitals renormalization group (NORG) method, we investigate the screening of the local spin of an Anderson impurity interacting with the helical edge states in a quantum spin Hall insulator. It is found that there is a local spin formed at the impurity site and the local spin is completely screened by electrons in the quantum spin Hall insulator. Meanwhile, the local spin is screened dominantly by a single active natural orbital. We then show that the Kondo screening mechanism becomes transparent and simple in the framework of the natural orbitals formalism. We project the active natural orbital respectively into real space and momentum space to characterize its structure. We confirm the spin-momentum locking property of the edge states based on the occupancy of a Bloch state on the edge to which the impurity couples. Furthermore, we study the dynamical property of the active natural orbital represented by the local density of states, from which we observe the Kondo resonance peak.
Received: 10 May 2018      Published: 12 May 2018
PACS:  73.43.-f (Quantum Hall effects)  
  71.10.-w (Theories and models of many-electron systems)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
Fund: Supported by National Natural Science Foundation of China under Grant Nos 11474356 and 11774422. R.Q.H. was supported by the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China. Computational resources were provided by National Supercomputer Center in Guangzhou with Tianhe-2 Supercomputer and Physical Laboratory of High Performance Computing in RUC.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/6/067301       OR      https://cpl.iphy.ac.cn/Y2018/V35/I6/067301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ru Zheng
Rong-Qiang He
Zhong-Yi Lu
[1]König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[2]Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[3]Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[4]Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[5]Wu C, Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106401
[6]Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[7]Xu C and Moore J E 2006 Phys. Rev. B 73 045322
[8]Maciejko J, Liu C, Oreg Y, Qi X L, Wu C and Zhang S C 2009 Phys. Rev. Lett. 102 256803
[9]Tanaka Y, Furusaki A and Matveev K A 2011 Phys. Rev. Lett. 106 236402
[10]Maciejko J 2012 Phys. Rev. B 85 245108
[11]Eriksson E 2013 Phys. Rev. B 87 235414
[12]Žitko R and Bonča J 2011 Phys. Rev. B 84 193411
[13]Zarea M, Ulloa S E and Sandler N 2012 Phys. Rev. Lett. 108 046601
[14]Isaev L, Agterberg D F and Vekhter I 2012 Phys. Rev. B 85 081107
[15]Kikoin K and Avishai Y 2012 Phys. Rev. B 86 155129
[16]Grap S, Meden V and Andergassen S 2012 Phys. Rev. B 86 035143
[17]Mastrogiuseppe D, Wong A, Ingersent K, Ulloa S E and Sandler N 2014 Phys. Rev. B 90 035426
[18]Wong A, Ulloa S E, Sandler N and Ingersent K 2016 Phys. Rev. B 93 075148
[19]G R de Sousa, Silva J F and Vernek E 2016 Phys. Rev. B 94 125115
[20]Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[21]Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[22]Goth F, Luitz D J and Assaad F F 2013 Phys. Rev. B 88 075110
[23]Hu F M, Wehling T O, Gubernatis J E, Frauenheim T and Nieminen R M 2013 Phys. Rev. B 88 045106
[24]Allerdt A, Feiguin A E and Martins G B 2017 Phys. Rev. B 96 035109
[25]He R Q and Lu Z Y 2014 Phys. Rev. B 89 085108
[26]Kühner T D and White S R 1999 Phys. Rev. B 60 335
[27]Jeckelmann E 2002 Phys. Rev. B 66 045114
Related articles from Frontiers Journals
[1] Tian-Sheng Zeng, Liangdong Hu, and W. Zhu. Bosonic Halperin (441) Fractional Quantum Hall Effect at Filling Factor $\nu=2/5$[J]. Chin. Phys. Lett., 2022, 39(1): 067301
[2] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 067301
[3] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 067301
[4] Na Jiang and Min Lu. Topological Distillation by Principal Component Analysis in Disordered Fractional Quantum Hall States[J]. Chin. Phys. Lett., 2020, 37(11): 067301
[5] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 067301
[6] Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, and Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(7): 067301
[7] Min Lu, Na Jiang, Xin Wan. Quasihole Tunneling in Disordered Fractional Quantum Hall Systems[J]. Chin. Phys. Lett., 2019, 36(8): 067301
[8] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 067301
[9] Shou-juan Zhang, Wei-xiao Ji, Chang-wen Zhang, Shu-feng Zhang, Ping Li, Sheng-shi Li, Shi-shen Yan. Discovery of Two-Dimensional Quantum Spin Hall Effect in Triangular Transition-Metal Carbides[J]. Chin. Phys. Lett., 2018, 35(8): 067301
[10] Xia-Yin Liu, Jia-Lu Wang, Wei You, Ting-Ting Wang, Hai-Yang Yang, Wen-He Jiao, Hong-Ying Mao, Li Zhang, Jie Cheng, Yu-Ke Li. Anisotropic Magnetoresistivity in Semimetal TaSb$_2$[J]. Chin. Phys. Lett., 2017, 34(12): 067301
[11] X.-X. Yuan, L. He, S.-T. Wang, D.-L. Deng, F. Wang, W.-Q. Lian, X. Wang, C.-H. Zhang, H.-L. Zhang, X.-Y. Chang, L.-M. Duan. Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator[J]. Chin. Phys. Lett., 2017, 34(6): 067301
[12] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 067301
[13] Xia Dai, Cong-Cong Le, Xian-Xin Wu, Sheng-Shan Qin, Zhi-Ping Lin, Jiang-Ping Hu. Topological Phase in Non-centrosymmetric Material NaSnBi[J]. Chin. Phys. Lett., 2016, 33(12): 067301
[14] Hua-Ling Yu, Zhang-Yin Zhai, Xin-Tian Bian. Integer Quantum Hall Effect in a Two-Orbital Square Lattice with Chern Number $C=2$[J]. Chin. Phys. Lett., 2016, 33(11): 067301
[15] SUN Liang, WAN Shao-Long. Chiral Current in the Lattice Model of Weyl Semimetal[J]. Chin. Phys. Lett., 2015, 32(5): 067301
Viewed
Full text


Abstract