Chin. Phys. Lett.  2018, Vol. 35 Issue (5): 057401    DOI: 10.1088/0256-307X/35/5/057401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Coexistence of Polaronic States and Superconductivity in Iron-Pnictide Compound Ba$_{2}$Ti$_{2}$Fe$_{2}$As$_{4}$O
Li-Yuan Rong1,2, Xun Shi2,3, Pierre Richard2,3,4, Yun-Lei Sun5, Guang-Han Cao5, Xiang-Zhi Zhang1, Jun-Zhang Ma2,3,6**, Ming Shi6, Yao-Bo Huang1**, Tian Qian3,4, Hong Ding2,3,4, Ren-Zhong Tai1
1Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204
2School of Physics, University of Chinese Academy of Sciences, Beijing 100190
3Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
4Collaborative Innovation Center of Quantum Matter, Beijing 100084
5Department of Physics, Zhejiang University, Hangzhou 310027
6Paul Scherrer Institut, Swiss Light Source, Villigen PSI CH-5232, Switzerland
Cite this article:   
Li-Yuan Rong, Xun Shi, Pierre Richard et al  2018 Chin. Phys. Lett. 35 057401
Download: PDF(1684KB)   PDF(mobile)(1665KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The electronic structure of iron-pnictide compound superconductor Ba$_{2}$Ti$_{2}$Fe$_{2}$As$_{4}$O, which has metallic intermediate Ti$_{2}$O layers, is studied using angle-resolved photoemission spectroscopy. The Ti-related bands show a 'peak-dip-hump' line shape with two branches of dispersion associated with the polaronic states at temperatures below around 120 K. This change in the spectra occurs along with the resistivity anomaly that was not clearly understood in a previous study. Moreover, an energy gap induced by the superconducting proximity effect opens in the polaronic bands at temperatures below $T_{\rm c}$ ($\sim$21 K). Our study provides the spectroscopic evidence that superconductivity coexists with polarons in the same bands near the Fermi level, which provides a suitable platform to study interactions between charge, lattice and spin freedoms in a correlated system.
Received: 15 January 2018      Published: 30 April 2018
PACS:  74.25.-q (Properties of superconductors)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.38.-k (Polarons and electron-phonon interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/5/057401       OR      https://cpl.iphy.ac.cn/Y2018/V35/I5/057401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li-Yuan Rong
Xun Shi
Pierre Richard
Yun-Lei Sun
Guang-Han Cao
Xiang-Zhi Zhang
Jun-Zhang Ma
Ming Shi
Yao-Bo Huang
Tian Qian
Hong Ding
Ren-Zhong Tai
[1]Turner A M, Wang F and Vishwanath A 2009 Phys. Rev. B 80 224504
[2]Aichhorn M, Biermann S, Miyake T, Georges A and Imada M 2010 Phys. Rev. B 82 064504
[3]Tamai A, Ganin A Y, Rozbicki E, Bacsa J, Meevasana W, King P D C, Caffio M, Schaub R, Margadonna S, Prassides K, Rosseinsky M J and Baumberger F 2010 Phys. Rev. Lett. 104 097002
[4]Nakayama K, Sato T, Richard P, Kawahara T, Sekiba Y, Qian T, Chen G F, Luo J L, Wang N L, Ding H and Takahashi T 2010 Phys. Rev. Lett. 105 197001
[5]Wang Q Y, Zhi L, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[6]Liu D F, Zhang W H, Mou D X, He J F, Ou Y B, Wang Q Y, Li Z, Wang L L, Zhao L, He S L, Peng Y Y, Liu X, Chen C Y, Yu L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Hu J P, Chen X, Ma X C, Xue Q K and Zhou X J 2012 Nat. Commun. 3 931
[7]He S L, He J F, Zhang W H, Zhao L, Liu D F, Liu X, Mou D X, Ou Y B, Wang Q Y, Li Z, Wang L L, Peng Y Y, Liu Y, Chen C Y, Yu L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Chen X, Ma X C, Xue Q K and Zhou X J 2013 Nat. Mater. 12 605
[8]Tan S Y, Zhang Y, Xia M, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Jiang J, Zhang T, Lai X C, Xiang T, Hu J P, Xie B P and Feng D L 2013 Nat. Mater. 12 634
[9]Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H and Shen Z X 2014 Nature 515 245
[10]Wang Z M, Walker S M, Tamai A, Wang Y, Ristic Z, Bruno F Y, Torre A D L, Riccò S, Plumb N C, Shi M, Hlawenka P, Sánchez-Barriga J, Varykhalov A, Kim T K, Hoesch M, King P D C, Meevasana W, Diebold U, Mesot J, Moritz B, Devereaux T P, Radovic M and Baumberger F 2016 Nat. Mater. 15 835
[11]Wang Z M, Zhong Z, Walker S M, Ristic Z, Ma J Z, Bruno F Y, Riccò S, Sangiovanni G, Eres G, Plumb N C, Patthey L, Shi M, Mesot J, Baumberger F and Radovic M 2017 Nano Lett. 17 2561
[12]Zhai H F, Jiao W H, Sun Y L, Bao J K, Jiang H, Yang X J, Tang Z T, Tao Q, Xu X F, Li Y K, Cao C, Dai J H, Xu Z A and Cao G H 2013 Phys. Rev. B 87 100502
[13]Ozawa T C and Kauzlarich S M 2001 Chem. Mater. 13 1804
[14]Gooch M, Doan P, Tang Z J, Lorenz B, Guloy A M and Chu P C 2013 Phys. Rev. B 88 064510
[15]Sun Y L, Jiang H, Zhai H F, Bao J K, Jiao W H, Tao Q, Shen C Y, Zeng Y W, Xu Z A and Cao G H 2012 J. Am. Chem. Soc. 134 12893
[16]Ma J Z, Roekeghem A V, Richard P, Liu Z H, Miao H, Zeng L K, Xu N, Shi M, Cao C, He J B, Chen G F, Sun Y L, Cao G H, Wang S C, Biermann S, Qian T and Ding H 2014 Phys. Rev. Lett. 113 266407
[17]Wang H P, Sun Y L, Wang X B, Huang Y, Dong T, Chen R Y, Cao G H and Wang N L 2014 Phys. Rev. B 90 144508
[18]Wu S F, Richard P, Zhang W L, Lian C S, Sun Y L, Cao G H, Wang J T and Ding H 2014 Phys. Rev. B 89 134522
[19]Suetin D V and Ivanovskii A L 2013 J. Alloys Compd. 564 117
[20]Thongcham K and Udomsamuthirun P 2015 J. Supercond. Novel Magn. 28 2299
[21]Zhou X D, Cai P, Wang A F, Ruan W, Ye C, Chen X H and You Y Z 2012 Phys. Rev. Lett. 109 037002
[22]Kou S P, Li T and Weng Z Y 2009 Europhys. Lett. 88 17010
[23]You Y Z, Yang F, Kou S P and Weng Z Y 2011 Phys. Rev. B 84 054527
[24]Liu Z K, He R H, Lu D H, Yi M, Chen Y L, Hashimoto M, Moore R G, Mo S K, Nowadnick E A, Hu J, Liu T J, Mao Z Q, Devereaux T P, Hussain Z and Shen Z X 2013 Phys. Rev. Lett. 110 037003
[25]Mishchenko A S, Nagaosa N, Shen K M, Shen Z X, Zhou X J and Devereaux T P 2011 Europhys. Lett. 95 57007
[26]Rösch O, Gunnarsson O, Zhou X J, Yoshida T, Sasagawa T, Fujimori A, Hussain Z, Shen Z X and Uchida S 2005 Phys. Rev. Lett. 95 227002
[27]Shen K M, Ronning F, Meevasana W, Lu D H, Ingle N J C, Baumberger F, Lee W S, Miller L L, Kohsaka Y, Azuma M, Takano M, Takagi H and Shen Z X 2007 Phys. Rev. B 75 075115
[28]Mannella N, Yang N L, Zhou X J, Zheng H, Mitchell J F, Zaanen J, Devereaux T P, Nagaosa N, Hussain Z and Shen Z X 2005 Nature 438 474
[29]Norman M R, Ding H, Randeria M, Campuzano J C, Yokoya T, Takeuchi T, Takahashi T, Mochiku T, Kadowaki K, Guptasarma P and Hinks D G 1998 Nature 392 157
[30]Bassani F G, Cataudella V, Chiofalo M L, Filippis G D, Iadonisi G and Perroni C A 2003 Phys. Stat. Sol. (b) 237 173
[31]Hohenadler M and Fehske H 2007 J. Phys.: Condens. Matter 19 255210
Related articles from Frontiers Journals
[1] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 057401
[2] Chunsheng Gong, Shangjie Tian, Zhijun Tu, Qiangwei Yin, Yang Fu, Ruitao Luo, and Hechang Lei. Superconductivity in Kagome Metal YRu$_{3}$Si$_{2}$ with Strong Electron Correlations[J]. Chin. Phys. Lett., 2022, 39(8): 057401
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 057401
[4] Lixuesong Han, Xianbiao Shi, Jinlong Jiao, Zhenhai Yu, Xia Wang, Na Yu, Zhiqiang Zou, Jie Ma, Weiwei Zhao, Wei Xia, and Yanfeng Guo. Nontrivial Topological States in BaSn$_{5}$ Superconductor Probed by de Haas–van Alphen Quantum Oscillations[J]. Chin. Phys. Lett., 2022, 39(6): 057401
[5] Yutao Jiang, Ze Yu, Yuxin Wang, Tenglong Lu, Sheng Meng, Kun Jiang, and Miao Liu. Screening Promising CsV$_{3}$Sb$_{5}$-Like Kagome Materials from Systematic First-Principles Evaluation[J]. Chin. Phys. Lett., 2022, 39(4): 057401
[6] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 057401
[7] Yuxin Yang, Wenhui Fan, Qinghua Zhang, Zhaoxu Chen, Xu Chen, Tianping Ying, Xianxin Wu, Xiaofan Yang, Fanqi Meng, Gang Li, Shiyan Li, Lin Gu, Tian Qian, Andreas P. Schnyder, Jian-gang Guo, and Xiaolong Chen. Discovery of Two Families of VSb-Based Compounds with V-Kagome Lattice[J]. Chin. Phys. Lett., 2021, 38(12): 057401
[8] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 057401
[9] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 057401
[10] Yi Cui, Cong Li, Qing Li, Xiyu Zhu, Ze Hu, Yi-feng Yang, Jinshan Zhang, Rong Yu, Hai-Hu Wen, and Weiqiang Yu. NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$[J]. Chin. Phys. Lett., 2021, 38(6): 057401
[11] Hui-Fei Zhai, Bo Lin, Pan Zhang, Hao Jiang, Yu-Ke Li, and Guang-Han Cao. Combined Study of Structural, Magnetic and Transport Properties of Eu$_{0.5}$$Ln$$_{0.5}$BiS$_{2}$F Superconductor[J]. Chin. Phys. Lett., 2021, 38(4): 057401
[12] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 057401
[13] Gaoning Zhang, Xianbiao Shi, Xiaolei Liu, Wei Xia, Hao Su, Leiming Chen, Xia Wang, Na Yu, Zhiqiang Zou, Weiwei Zhao, and Yanfeng Guo. de Haas–van Alphen Quantum Oscillations in BaSn$_{3}$ Superconductor with Multiple Dirac Fermions[J]. Chin. Phys. Lett., 2020, 37(8): 057401
[14] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 057401
[15] Bo-Jin Pan, Kang Zhao, Tong Liu, Bin-Bin Ruan, Shuai Zhang, Gen-Fu Chen, Zhi-An Ren. Direct Microwave Synthesis of 11-Type Fe(Te,Se) Polycrystalline Superconductors with Enhanced Critical Current Density[J]. Chin. Phys. Lett., 2019, 36(1): 057401
Viewed
Full text


Abstract