CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Anti-Reflection Characteristics of Si Nanowires for Enhanced Photoluminescence from CdTe/CdS Quantum Dots |
Hong-Yu Wang1,2, Dan Shan2,3, Ling Xu2** |
1Tongda College, Nanjing University of Posts and Telecommunications, Nanjing 210003 2National Laboratory of Solid State Microstructure and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 3School of Electronic and Information Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127
|
|
Cite this article: |
Hong-Yu Wang, Dan Shan, Ling Xu 2018 Chin. Phys. Lett. 35 056801 |
|
|
Abstract CdTe/CdS quantum dots (QDs) are fabricated on Si nanowires (NWs) substrates with and without Au nanoparticles (NPs). The formation of Au NPs on Si NWs can be certified as shown in scanning electron microscopy images. The optical properties of samples are also investigated. It is interesting to find that the photoluminescence (PL) intensity of CdTe/CdS QD films on Si nanowire substrates with Au NPs is significantly increased, which can reach 8-fold higher than that of samples on planar Si without Au NPs. The results of finite-difference time-domain simulation indicate that Au NPs induce stronger localization of electric field and then boost the PL intensity of QDs nearby. Furthermore, the time-resolved luminescence decay curve shows the PL lifetime, which is about 5.5 ns at the emission peaks of QD films on planar, increasing from 1.8 ns of QD films on Si NWs to 4.7 ns after introducing Au NPs into Si NWs.
|
|
Received: 30 November 2017
Published: 30 April 2018
|
|
PACS: |
68.65.Hb
|
(Quantum dots (patterned in quantum wells))
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
82.33.Ln
|
(Reactions in sol gels, aerogels, porous media)
|
|
|
Fund: Supported by the Qing Lan Project of the Higher Education Institutions of Jiangsu Province, Qing Lan Project of Yangzhou Polytechnic Institute, the Natural Science Foundation of Yangzhou City under Grant No YZ2016123, and the National Natural Science Foundation of China under Grant No 61376004. |
|
|
[1] | Klein M C 1990 Phys. Rev. B 42 1123 | [2] | Zheng Y G, Gao S and Ying J Y 2007 Adv. Mater. 19 376 | [3] | Chan W C and Nie S 1998 Science 281 2016 | [4] | Rogach A L, Franzl T, Klar T A, Feldmann J, Gaponik N, Lesnyak V, Shavel A, Eychmuller A, Rakovich Y P and Donegan J F 2007 J. Phys. Chem. C 111 14628 | [5] | Gerion D, Parak W J, Williams S C, Zanchet D, Micheel C M and Alivisatos A P 2002 J. Am. Chem. Soc. 124 7070 | [6] | Yang Y H, Wen Z K, Dong Y P and Gao M Y 2006 Small 2 898 | [7] | Wang Y L, Cheng Z Q, Ma L, Peng X N, Hao Z H and Wang Q Q 2015 Chin. Phys. Lett. 32 034205 | [8] | Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U and Artemyev M 2002 Nano Lett. 2 1449 | [9] | Lee J, Govorov A O, Dulka J and Kotov N A 2004 Nano Lett. 4 2323 | [10] | Gittleman J I, Sichel E K, Lehmann H W and Widmer R 1979 Appl. Phys. Lett. 35 742 | [11] | Garnett E and Yang P D 2010 Nano Lett. 10 1082 | [12] | Zhu J, Yu Z F, Burkhard G F, Hsu C M, Conner S T, Xu Y Q, Wang Q, McGehee M, Fan S H and Cui Y 2009 Nano Lett. 9 279 | [13] | Kelzenberg M D, Boettcher S W, Petykiewicz J A, Turner-Evans D B, Putnam M C, Warren E L, Spurgeon J M, Briggs R M, Lewis N S and Atwater H A 2010 Nat. Mater. 9 239 | [14] | Peng K Q, Xu Y, Wu Y, Yan Y J, Lee S T and Zhu J 2005 Small 1 1062 | [15] | Huang Z, Geyer N, Werner P, De J and Gösele U 2011 Adv. Mater. 23 285 | [16] | Lin G J, Wang H P, Lien D H, Fu P H, Chang H C, Ho C H, Lin C A, Lai K Y and He J H 2014 Nano Energy 6 36 | [17] | Kumar D, Srivastava S K, Singh P K, Husain M and Kumar V 2011 Sol. Energy Mater. Sol. Cells C 95 215 | [18] | Yablonovitch E and Cody G D 1982 IEEE Trans. Electron Devices 29 300 | [19] | Zhai Y Y, Cao Y Q, Lin ZW, Qian MQ, Xu J, Li W, Xu L and Chen K J 2016 IEEE Photon. J. 8 4501708 | [20] | Ji Y, Zhai Y Y, Yang H, Liu J, Shao W, Xu J, Li W and Chen K J 2017 Nanoscale. 9 16038 | [21] | Lakowicz J R 2001 Anal. Biochem 298 1 | [22] | Shao L, Ruan Q F, Wang J F and Lin H Q 2014 Physics 43 290 (in Chinese) | [23] | D'Andrea C, Faro MJL, Bertino G, Ossi P M, Neri F, Trusso S, Musumeci P, Galli M, Cioffi N, Lrrera A, Priolo F and Fazio B 2016 Nanotechnology 27 375603 | [24] | Su Y Y, Wei X P, Peng F, Zhong Y L, Lu Y M, Su S, Xu T G, Lee S T and He Y 2012 Nano Lett. 12 1845 | [25] | Yang J, You J B, Chen C C, Hsu W C, Tan H R, Zhang X W, Hong Z R and Yang Y 2011 ACS Nano 5 6210 | [26] | Jones M, Nedeljkovic J, Ellingson R J, Nozik A J and Rumbles G 2003 J. Phys. Chem. B 107 11346 | [27] | Su D, Dou X M, Ding K, Wang H Y, Ni H Q, Niu Z C and Sun B Q 2015 Acta Phys. Sin. 64 235201 (in Chinese) | [28] | Neretina S, Qian W, Dreaden E, El-Sayed M A, Hughes R A, Preston P S and Mascher P 2008 Nano Lett. 8 2410 | [29] | Geddes C D and Lakowicz J R 2002 J. Fluoresc. 12 121 | [30] | Lakowicz J R 2005 Anal. Biochem. 337 171 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|