Chin. Phys. Lett.  2018, Vol. 35 Issue (4): 048701    DOI: 10.1088/0256-307X/35/4/048701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
A Dynamic Model of Heavy Ion $^{7}$Li Irradiation Mutagenesis Based on Maize Inbred Line Nutrition Difference
Jin-Shan Hu1,2**, Jin-Peng Geng1, Duo-Fang Li1, Li Sui3, Yong Zhan1**
1College of Electrical Engineering, Hebei University of Technology, Tianjin 300401
2College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210
3China Institute of Atomic Energy, Beijing 102413
Cite this article:   
Jin-Shan Hu, Jin-Peng Geng, Duo-Fang Li et al  2018 Chin. Phys. Lett. 35 048701
Download: PDF(1270KB)   PDF(mobile)(1262KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To reveal the saddle-type dose effect relationship, we propose a radiation mutagenesis model based on maize nutrition difference resulting from heavy ion $^{7}$Li radiation. Through irradiation mutagenesis, apparent trait selection, amino acids and fatty acids content determination, and modeling, dynamic evolution from microscopic damage and repair initiation to the final macroscopic biological effects are considered simultaneously. The results show that the steady state nature is independent of evolution time and only relates to different radiation doses. Heavy ion $^{7}$Li radiation could effectively cause maize phenotypic variation and could improve nutritional quality. This model not only gives a good fit to the experimental results on most types of amino acids and fatty acids, but also offers an adequate explanation of the experimental phenomenon underlying the saddle-type bimodal dose effect. By combining experimental results with theoretical analyses, we suggest that the synergy of the stimulus effect and momentum transfer is the main cause of the saddle-type dose effect bimodal curve. This provides an effective strategy for conducting maize germplasm innovation.
Received: 20 November 2017      Published: 13 March 2018
PACS:  87.16.A- (Theory, modeling, and simulations)  
  87.18.Vf (Systems biology)  
  87.23.Kg (Dynamics of evolution)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11735006, the Hebei Natural Science Foundation of China under Grant No B2014209314, and the Hebei Science and Technology Research Project of Higher Education under Grant No ZD2017023.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/4/048701       OR      https://cpl.iphy.ac.cn/Y2018/V35/I4/048701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jin-Shan Hu
Jin-Peng Geng
Duo-Fang Li
Li Sui
Yong Zhan
[1]Hase Y et al 2012 Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 731 41
[2]Kikuchi S et al 2009 Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 669 63
[3]Morishita T et al 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 206 565
[4]Geng J P et al 2012 Mol. Plant Breed. 3 132
[5]Dong X C and Li W J 2012 Adv. Space Res. 50 496
[6]Cabanos C S et al 2012 Mol. Plant Breed. 30 1037
[7]Pathak R et al 2007 Mutat. Res-Gen. Tox. En. 632 58
[8]Kazama Y et al 2008 Plant Biotechnol-Nar. 25 113
[9]Aoki-Nakano M and Furusawa Y 2013 J. Radiat. Res. 54 1029
[10]Kazama Y et al 2012 Plant Biotechnol-Nar. 29 441
[11]Zhou L B et al 2006 Int. J. Radiat. Biol. 82 473
[12]Blakely E A and Kronenberg A 1998 Radiat. Res. 510 S126
[13]Wang T et al 2012 Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 737 51
[14]Hirano T et al 2012 Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 735 19
[15]Han R F et al 2009 Nucl. Phys. Rev. 26 352 (in Chinese)
[16]Le C L 1992 Math. Biosci. 112 261
[17]Huang W D and Yu Z L 2007 Int. J. Radiat. Biol. 83 133
[18]Huang W D, Yu Z L and Zhang Y H 1998 Nucl. Instrum. Methods Phys. Res. Sect. B 134 202
[19]Huang W D et al 1998 Nucl. Instrum. Methods Phys. Res. Sect. B 140 373
[20]Ke Z G et al 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 2729
[21]Geng J P et al 2014 Chin. Phys. Lett. 31 038701
[22]Rueangkham N and Modchang C 2016 Chin. Phys. B 25 048201
[23]Shao C L et al 1995 Acta Agriculturae Nucleatae Sin. 9 37
[24]Shao C L and Yu Z L 1996 Nucl. Tech. 19 321
[25]Shao C L and Yu Z L 1997 Nucl. Tech. 20 423
[26]Li D F et al 2015 Acta Phys. Sin. 64 248701 (in Chinese)
[27]Lei H et al 2013 Appl. Microbiol. Biot. 97 8913
[28]Misra B B et al 2013 J. Pharmacy Res. 7 299
[29]Li D F et al 2015 Chin. Phys. Lett. 32 018702
[30]Curtis S B 1986 Radiat. Res. 106 252
[31]Mirzaie J H et al 2002 Cancer 94 1210
[32]Semenov Y S and Novozhilov A S 2015 Math. Biosci. 266 1
[33]Wu Y R and Messing J 2012 PLoS ONE 7 e32850
[34]Geng J P et al 2013 J. Maize Sci. 21 66 (in Chinese)
Related articles from Frontiers Journals
[1] Lin Tian, Zhang-Cai Long. Auditory Hopf Amplification Revealed by an Energy Method[J]. Chin. Phys. Lett., 2017, 34(4): 048701
[2] SHEN Zai-Yi, HE Ying. A Lattice Boltzmann Method for Simulating the Separation of Red Blood Cells at Microvascular Bifurcations[J]. Chin. Phys. Lett., 2012, 29(2): 048701
[3] LI Cong-Xin, CHEN Xiao-Fang, WANG Peng-Ye, WANG Wei-Chi. Effects of CRAC Channel on Spatiotemporal Ca2+ Patterns in T Cells[J]. Chin. Phys. Lett., 2010, 27(2): 048701
Viewed
Full text


Abstract