Chin. Phys. Lett.  2018, Vol. 35 Issue (3): 030201    DOI: 10.1088/0256-307X/35/3/030201
GENERAL |
Soliton, Breather and Rogue Wave Solutions for the Nonlinear Schr?dinger Equation Coupled to a Multiple Self-Induced Transparency System
Xin Wang1,2**, Lei Wang3
1College of Science, Zhongyuan University of Technology, Zhengzhou 450007
2School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001
3School of Mathematics and Physics, North China Electric Power University, Beijing 102206
Cite this article:   
Xin Wang, Lei Wang 2018 Chin. Phys. Lett. 35 030201
Download: PDF(1009KB)   PDF(mobile)(1009KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We derive an $N$-fold Darboux transformation for the nonlinear Schrödinger equation coupled to a multiple self-induced transparency system, which is applicable to optical fiber communications in the erbium-doped medium. The $N$-soliton, $N$-breather and $N$th-order rogue wave solutions in the compact determinant representations are derived using the Darboux transformation and limit technique. Dynamics of such solutions from the first- to second-order ones are shown.
Received: 03 November 2017      Published: 25 February 2018
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11705290 and 11305060, and the China Postdoctoral Science Foundation under Grant No 2016M602252.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/3/030201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I3/030201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin Wang
Lei Wang
[1]Maimistov A I and Manyakin E A 1983 Sov. Phys. JETP 58 685
[2]He J S, Xu S W and Porsezian K 2012 J. Phys. Soc. Jpn. 81 033002
[3]Kundu A 2011 Theor. Math. Phys. 167 800
[4]Peregrine D H 1983 J. Austral. Math. Soc. B: Appl. Math. 25 16
[5]Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
[6]Yan Z Y 2011 Phys. Lett. A 375 4274
[7]Guo B L, Ling L M and Liu Q P 2012 Phys. Rev. E 85 026607
[8]Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202
[9]Liu Y K and Li B 2017 Pramana 88 675
[10]Wang X, Li Y Q and Chen Y 2014 Wave Motion 51 1149
[11]Wang X, Liu C and Wang L 2017 J. Math. Anal. Appl. 449 1534
[12]Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer-Verlag)
[13]Zhang D J 2009 Reported in INI Program: DIS, http://www. newton.ac.uk/files/seminar/20090616110011501-152161.pdf
[14]Zhang D J 2006 arXiv:nlin/0603008
[15]Zhang D J and Zhao S L 2013 Stud. Appl. Math. 131 72
[16]Chen K and Zhang D J 2018 Appl. Math. Lett. 75 82
[17]Wei J and Geng X G 2015 Appl. Math. Comput. 268 664
[18]Wei J and Geng X G 2016 Appl. Math. Lett. 55 36
[19]Wei J, Geng X G and Zeng X 2016 J. Geom. Phys. 106 26
[20]Zhang D J, Zhao S L, Sun Y Y and Zhou J 2014 Rev. Math. Phys. 26 1430006
[21]Zhou J, Zhang D J and Zhao S L 2009 Phys. Lett. A 373 3248
[22]Zhang D J, Zhang J B and Shen Q 2010 Theor. Math. Phys. 163 634
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 030201
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 030201
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 030201
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 030201
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 030201
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 030201
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 030201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 030201
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 030201
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 030201
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 030201
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 030201
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 030201
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 030201
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 030201
Viewed
Full text


Abstract