CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Electron Transport Behavior of Multiferroic Perovskite BiMnO$_{3}$ Prepared by Co-Precipitation Method |
Hong-Jun Wang, Yuan-Yuan Zhu**, Jing Zhou |
Department of Physics, Shaanxi University of Science and Technology, Xi'an 710021
|
|
Cite this article: |
Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou 2018 Chin. Phys. Lett. 35 027201 |
|
|
Abstract Perovskite BiMnO$_{3}$ samples are successfully synthesized by the co-precipitation method at relatively low pressure and moderate temperature. The temperature dependences of resistivity are measured and systematically investigated. It is shown that the electrical resistivity increases sharply with the decrease of temperature above 210 K and the fitted results demonstrate that the thermally activated conduction model is the dominant conduction mechanism for the electron transport behaviors in this temperature region. A dual conducting mechanism, i.e., the variable range hopping and thermal activated conduction, is suggested to be responsible for the transport behaviors of BiMnO$_{3}$ in the region of 180–200 K. Moreover, the resistivity increases slightly with the decrease of temperature below 180 K and the transport is governed by the variable range hopping mechanism.
|
|
Received: 10 October 2017
Published: 23 January 2018
|
|
PACS: |
72.80.Ga
|
(Transition-metal compounds)
|
|
72.15.Eb
|
(Electrical and thermal conduction in crystalline metals and alloys)
|
|
66.70.Df
|
(Metals, alloys, and semiconductors)
|
|
|
Fund: Supported by the Key Research Project of Shaanxi University of Science and Technology under Grant Nos 2016GBJ-12 and 2016BJ-59. |
|
|
[1] | Son J Y, Park C S and Kim H 2010 Met. Mater. Int. 16 289 | [2] | Yao C D, Gong J F, Geng F F, Gao H, Xu Y L, Zhang A M, Tang C M and Zhu W H 2010 Acta Phys. Sin. 59 5332 (in Chinese) | [3] | Li S, Zhang J M, Kibria M G et al 2013 Chem. Commun. 49 5856 | [4] | Shirolkar M M, Hao C, Dong X et al 2014 Nanoscale 6 4735 | [5] | Mukherjee A, Basu S, Manna P K et al 2014 J. Mater. Chem. C 2 5885 | [6] | Brankovi Z, Stanojevi Z, Mancic L et al 2010 J. Eur. Ceram. Soc. 30 277 | [7] | Yokosawa T, Belik A A, Asaka T et al 2008 Phys. Rev. B 77 024111 | [8] | Lee B W, Yoo P S, Nam V B et al 2015 Nanoscale Res. Lett. 10 47 | [9] | Guennou M, Bouvier P, Toulemonde P et al 2014 Phys. Rev. Lett. 112 075501 | [10] | Sugawara F and Iiida S 1968 J. Phys. Soc. Jpn. 25 1553 | [11] | Belik A A, Matsushita Y, Tanaka M et al 2011 Inorg. Mater. 50 7685 | [12] | Eerenstein W, Morrison F D, Scott F et al 2005 Appl. Phys. Lett. 87 101906 | [13] | Dar M S and Akram K B 2014 J. Supercond. Novel Magn. 27 613 | [14] | Mazumder N, Uddin I, Khan S et al 2007 J. Mater. Chem. 17 3910 | [15] | Sun B and Li C M 2015 Phys. Chem. Chem. Phys. 17 6718 | [16] | Grizalez M, Delgado E, Gómezand M E and Prieto P 2007 Phys. Stat. Sol. 4 4203 | [17] | Majumdar S and Banerji P 2010 J. Appl. Phys. 107 063702 | [18] | Chiba H, Atou T and Syono Y 1997 J. Solid St. Chem. 132 139 | [19] | Woo H, Tyson T A and Croft M et al 2001 Phys. Rev. B 63 134412 | [20] | Seshadri R and Hill N A 2001 Chem. Mater. 13 2892 | [21] | Koronska R B and Nalecz D M 2013 Phase Trans. 86 167 | [22] | Catalan G, Bowman R M and Gregg J M 2000 Phys. Rev. B 62 7892 | [23] | Zhu Y Y, Wang H J, Wang L, Liu Y, Xiong R and Shi J 2016 J. Alloy Compd. 666 248 | [24] | Zhu Y Y, Wang R J, Wang L, Liu Y, Xiong R, Shi J, An L H and Sun D H 2014 Chin. Phys. Lett. 31 097201 | [25] | AnisurRahman K M, Schneider S C and Seitz M A 2005 J. Am. Ceram. Soc. 80 1198 | [26] | Belik A A 2017 J. Solid State Chem. 246 8 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|