FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Frequency Stabilization of Pulsed Injection-Seeded OPO Based on Optical Heterodyne Technique |
Xiao Chen1,2, Xiao-Lei Zhu1**, Shi-Guang Li1**, Xiu-Hua Ma1, Wei Xie1,2, Ji-Qiao Liu1, Wei-Biao Chen1, Ren Zhu1 |
1Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 2University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Xiao Chen, Xiao-Lei Zhu, Shi-Guang Li et al 2018 Chin. Phys. Lett. 35 024201 |
|
|
Abstract A frequency stabilizing system for a pulsed injection seeded 1550 nm optical parametric oscillator (OPO) at 20 Hz repetition rate is demonstrated. The optical heterodyne method is used to measure the frequency difference between the seed laser and the OPO output. Using the frequency difference as the error signal, a proportional-integral controller in combination with a scanner is applied to stably match the OPO cavity length to the seed laser frequency. The root-mean-square (rms) error of the frequency discrimination method is $ < $0.07 MHz according to a 'frequency shifting-chopping-beat' evaluation. The frequency fluctuation of the frequency-stabilized OPO is 0.29 MHz (rms), and the Allan deviation is less than 20 kHz for averaging time of more than 3 s.
|
|
Received: 10 November 2017
Published: 23 January 2018
|
|
PACS: |
42.60.Lh
|
(Efficiency, stability, gain, and other operational parameters)
|
|
42.65.Yj
|
(Optical parametric oscillators and amplifiers)
|
|
42.60.By
|
(Design of specific laser systems)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFC1400902, the National Natural Science Foundation of China under Grant Nos 61505230 and 61475170, and the Shanghai Natural Science Foundation under Grant No 15ZR1445000. |
|
|
[1] | Ehret G, Kiemle C, Wirth M, Amediek A, Fix A and Houweling S 2008 Appl. Phys. B 90 593 | [2] | Fix A, Büdenbender C, Wirth M, Quatrevalet M, Amediek A, Kiemle C and Ehret G 2011 Proc. SPIE 8182 818206 | [3] | Du J, Sun Y G, Chen D J, Mu Y J, Huang M J, Yang Z G, Liu J Q, Be D C, Hou X and Chen W J 2017 Chin. Opt. Lett. 15 031401 | [4] | Park Y K, Giuliani G and Byer R L 1984 IEEE J. Quantum Electron. 20 117 | [5] | He Y, Baxter G W and Orr B J 1999 Rev. Sci. Instrum. 70 3203 | [6] | Wang Q, Duan J, Qi X H, Zhang Y and Chen X Z 2015 Chin. Phys. Lett. 32 054206 | [7] | Henderson S W, Yuen E H and Fry E S 1986 Opt. Lett. 11 715 | [8] | Sträßer A, Waltinger T and Ostermeyer M 2007 Appl. Opt. 46 8358 | [9] | Wirth M, Fix A, Mahnke P, Schwarzer H, Schrandt F and Ehret G 2009 Appl. Phys. B 96 201 | [10] | Schröder T, Lemmerz C, Reitebuch O, Wirth M, Wührer C and Treichel R 2007 Appl. Phys. B 87 437 | [11] | Li S G, Li H H, Ma X H, Wang J T, Zhu X L and Chen W B 2012 Laser Phys. 22 1610 | [12] | Raymond T D, Alford W J and Smith A V 1994 Opt. Lett. 19 1520 | [13] | White R T, He Y and Orr B 2004 J. Opt. Soc. Am. B 21 1577 | [14] | Feng G S, Wu J Z, Wang X F, Zheng N X, Li Y Q, Ma J, Xiao L T and Jia S T 2015 Chin. Phys. B 24 104211 | [15] | Walther T, Larsen M P and Fry E S 2001 Appl. Opt. 40 3046 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|