Chin. Phys. Lett.  2018, Vol. 35 Issue (2): 027101    DOI: 10.1088/0256-307X/35/2/027101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Interaction-Induced Characteristic Length in Strongly Many-Body Localized Systems
Rong-Qiang He1,2**, Zhong-Yi Lu1**
1Department of Physics, Renmin University of China, Beijing 100872
2Institute for Advanced Study, Tsinghua University, Beijing 100084
Cite this article:   
Rong-Qiang He, Zhong-Yi Lu 2018 Chin. Phys. Lett. 35 027101
Download: PDF(483KB)   PDF(mobile)(474KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A complete set of local integrals of motion (LIOM) is a key concept for describing many-body localization (MBL), which explains a variety of intriguing phenomena in MBL systems. For example, LIOM constrain the dynamics and result in ergodicity violation and breakdown of the eigenstate thermalization hypothesis. However, it is difficult to find a complete set of LIOM explicitly and accurately in practice, which impedes some quantitative structural characterizations of MBL systems. Here we propose an accurate numerical method for constructing LIOM, discover through the LIOM an interaction-induced characteristic length $\xi_+$, and prove a 'quasi-product-state' structure of the eigenstates with that characteristic length $\xi_+$ for MBL systems. More specifically, we find that there are two characteristic lengths in the LIOM. The first one is governed by disorder and is of Anderson-localization nature. The second one is induced by interaction but shows a discontinuity at zero interaction, showing a nonperturbative nature. We prove that the entanglement and correlation in any eigenstate extend not longer than twice the second length and thus the eigenstates of the system are the quasi-product states with such a localization length.
Received: 23 December 2017      Published: 27 December 2017
PACS:  71.23.An (Theories and models; localized states)  
  72.15.Rn (Localization effects (Anderson or weak localization))  
  02.60.Pn (Numerical optimization)  
  05.30.-d (Quantum statistical mechanics)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11474356 and 91421304, and the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) under Grant No U1501501. R.Q.H. was supported by China Postdoctoral Science Foundation under Grant No 2015T80069. Computational resources were provided by National Supercomputer Center in Guangzhou with Tianhe-2 Supercomputer and Physical Laboratory of High Performance Computing in RUC.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/2/027101       OR      https://cpl.iphy.ac.cn/Y2018/V35/I2/027101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rong-Qiang He
Zhong-Yi Lu
[1]Basko D M, Aleiner I L and Altshuler B L 2006 Ann. Phys. 321 1126
[2]Gornyi I V, Mirlin A D and Polyakov D G 2005 Phys. Rev. Lett. 95 206603
[3]Imbrie J Z 2016 Phys. Rev. Lett. 117 027201
[4]Imbrie J Z 2016 J. Stat. Phys. 163 998
[5]Oganesyan V and Huse D A 2007 Phys. Rev. B 75 155111
[6]?nidari? M, Prosen T and Prelov?ek P 2008 Phys. Rev. B 77 064426
[7]Pal A and Huse D A 2010 Phys. Rev. B 82 174411
[8]Monthus C and Garel T 2010 Phys. Rev. B 81 134202
[9]Canovi E, Rossini D, Fazio R, Santoro G E and Silva A 2011 Phys. Rev. B 83 094431
[10]Kj?ll J A, Bardarson J H and Pollmann F 2014 Phys. Rev. Lett. 113 107204
[11]Luitz D J, Laflorencie N and Alet F 2015 Phys. Rev. B 91 081103
[12]Tang B, Iyer D and Rigol M 2015 Phys. Rev. B 91 161109
[13]Bauer B and Nayak C 2013 J. Stat. Mech. 2013 P09005
[14]Bardarson J H, Pollmann F and Moore J E 2012 Phys. Rev. Lett. 109 017202
[15]Serbyn M, Papi? Z and Abanin D A 2013 Phys. Rev. Lett. 110 260601
[16]Kim I H, Chandran A and Abanin D A 2014 arXiv:1412.3073
[17]Ros V, Müller M and Scardicchio A 2015 Nucl. Phys. B 891 420
[18]Deutsch J M 1991 Phys. Rev. A 43 2046
[19]Srednicki M 1994 Phys. Rev. E 50 888
[20]Tasaki H 1998 Phys. Rev. Lett. 80 1373
[21]Rigol M, Dunjko V, Yurovsky V and Olshanii M 2007 Phys. Rev. Lett. 98 050405
[22]Rigol M, Dunjko V and Olshanii M 2008 Nature 452 854
[23]Wootton J R and Pachos J K 2011 Phys. Rev. Lett. 107 030503
[24]Stark C, Pollet L, Imamo?lu A and Renner R 2011 Phys. Rev. Lett. 107 030504
[25]Huse D A, Nandkishore R, Oganesyan V, Pal A and Sondhi S L 2013 Phys. Rev. B 88 014206
[26]Bahri Y, Vosk R, Altman E and Vishwanath A 2013 arXiv:1307.4092
[27]Serbyn M, Papi? Z and Abanin D A 2013 Phys. Rev. Lett. 111 127201
[28]Huse D A, Nandkishore R and Oganesyan V 2014 Phys. Rev. B 90 174202
[29]Rademaker L and M Ortu no 2016 Phys. Rev. Lett. 116 010404
[30]Chandran A, Kim I H, Vidal G and Abanin D A 2015 Phys. Rev. B 91 085425
[31]Inglis S and Pollet L 2016 Phys. Rev. Lett. 117 120402
[32]Anderson P W 1958 Phys. Rev. 109 1492
[33]${\boldsymbol R} = f(g({\boldsymbol E}))$. Every element of ${\boldsymbol E}$ is 0 or 1. It is 1 only when it is permuted via ${\boldsymbol P}^? $ to a diagonal element of $[{\boldsymbol U}^{\rm d} | {\boldsymbol E}] {\boldsymbol P}^? $. Function $g({\boldsymbol E})$ orthonomalizes every column of ${\boldsymbol E}$ to all columns of ${\boldsymbol U}^{\rm d}$. Function $f({\boldsymbol S})$ unitarizes ${\boldsymbol S}$ in the space spanned by the columns of ${\boldsymbol S}$ via repeated applications of ${\boldsymbol S} \leftarrow \frac 32 {\boldsymbol S} - \frac 12 {\boldsymbol S} {\boldsymbol S}^? {\boldsymbol S}$ until convergence, i. e., ${\boldsymbol S} = \frac 32 {\boldsymbol S} - \frac 12 {\boldsymbol S} {\boldsymbol S}^? {\boldsymbol S}$. In other words, function $f({\boldsymbol S})$ produces a matrix close to ${\boldsymbol S}$ and so that $[{\boldsymbol U}^{\rm d} | {\boldsymbol R}]$ is unitary
[34]The number of steps in this minimization is 1 in this work, which is found to be the most efficient for the whole LIOM construction. The step size $|\delta {\boldsymbol X}|$ is set to $|\delta {\boldsymbol X}| / |{\boldsymbol I}| \sim 0.08$, to which the minimization efficiency is not very sensitive
[35]He R Q and Lu Z Y 2016 arXiv:1606.09509v1
[36]The data points of $n = 8, 9$ and $n = 7, 8, 9$ with $L = 12$ are used to calculate $\xi$ and $\xi_+$, respectively
Related articles from Frontiers Journals
[1] Ao Zhang, Yun-Lin Chen, Chun-Xiu Zhang, Jun Yan. CH$_{3}$NH$_{3}$ Formed by Electron Injection at Heterojunction Inducing Peculiar Properties of CH$_{3}$NH$_{3}$PbI$_{3}$ Material[J]. Chin. Phys. Lett., 2019, 36(2): 027101
[2] Can Li, Cong-Wei Liao, Tian-Bao Yu, Jian-Yuan Ke, Sheng-Xiang Huang, Lian-Wen Deng. Concise Modeling of Amorphous Dual-Gate In-Ga-Zn-O Thin-Film Transistors for Integrated Circuit Designs[J]. Chin. Phys. Lett., 2018, 35(2): 027101
[3] QIANG Lei, YAO Ruo-He. A Drain Current Model Based on the Temperature Effect of a-Si:H Thin-Film Transistors[J]. Chin. Phys. Lett., 2012, 29(9): 027101
[4] HU Dong-Sheng, ZHANG Yan-Ling, YIN Xiao-Gang, ZHU Chen-Ping, ZHANG Yong-Mei. Resonant Tunneling States of a Pairing Ladder with Random Dimer Chains[J]. Chin. Phys. Lett., 2012, 29(2): 027101
[5] WANG Gui, GONG Xin-Gao. A Possible Structure of the Al36 Cluster: Coexistence of Icosahedral and fcc-Like Structures[J]. Chin. Phys. Lett., 2009, 26(8): 027101
[6] HAO Ya-Fei, CHEN Yong-Hai, HAO Guo-Dong, WANG Zhan-Guo. Electric Field Control of Interface Related Spin Splitting in Step Quantum Wells[J]. Chin. Phys. Lett., 2009, 26(7): 027101
[7] SHI Li-Peng, XIONG Shi-Jie. Screening of Local Magnetic Moment by Electrons of Disordered Graphene[J]. Chin. Phys. Lett., 2009, 26(6): 027101
[8] HAO Ya-Fei, CHEN Yong-Hai, HAO Guo-Dong, WANG Zhan-Guo. Anisotropic Spin Splitting in Step Quantum Wells[J]. Chin. Phys. Lett., 2009, 26(3): 027101
[9] LI Dong-Guang. Cleavage Luminescence from Cleaved Indium Phosphide[J]. Chin. Phys. Lett., 2008, 25(12): 027101
[10] LI Hai-Hong, LI Dong-Mei, LI Yuan, GAO Kun, LIU De-Sheng, XIE Shi-Jie. Charge Injection and Transport in Metal/Polymer Chains/Metal Sandwich Structure[J]. Chin. Phys. Lett., 2008, 25(8): 027101
[11] LIU Yong-Hui, WANG Xue-Feng, LI Shu-Shen. Quantum-Confined Stark Effects in a Single GaN Quantum Dot[J]. Chin. Phys. Lett., 2008, 25(7): 027101
[12] GUO Zi-Zheng. Entanglement in One-Dimensional Anderson Model with Long-Range Correlated Disorder[J]. Chin. Phys. Lett., 2008, 25(3): 027101
[13] JIANG Xiao-Shu, Walter R. L. Lambrecht. Jahn--Teller Distortion of the Zinc Vacancy in ZnGeP2[J]. Chin. Phys. Lett., 2008, 25(3): 027101
[14] XU Ying-Qiang, ZHANG Wei, NIU Zhi-Chuang, WU Rong-Han, WANG Qi-Ming. Effect of SiO2 Encapsulation on the Nitrogen Reorganization in a GaNAs/GaAs Single Quantum Well[J]. Chin. Phys. Lett., 2004, 21(3): 027101
Viewed
Full text


Abstract