Chin. Phys. Lett.  2017, Vol. 34 Issue (10): 108301    DOI: 10.1088/0256-307X/34/10/108301
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Hydrogen-Bond Symmetrization of $\delta$-AlOOH
Duan Kang1, Ye-Xin Feng2, Ying Yuan3, Qi-Jun Ye3, Feng Zhu1, Hao-Yan Huo3, Xin-Zheng Li3**, Xiang Wu4**
1Key Laboratory of Orogenic Belts and Crustal Evolution (Ministry of Education), School of Earth and Space Sciences, Peking University, Beijing 100871
2School of Physics and Electronics, Hunan University, Changsha 410081
3School of Physics and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871
4State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074
Cite this article:   
Duan Kang, Ye-Xin Feng, Ying Yuan et al  2017 Chin. Phys. Lett. 34 108301
Download: PDF(1871KB)   PDF(mobile)(1855KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The $\delta$-AlOOH can transport water into the deep mantle along cold subducting slab geotherm. We investigate the hydrogen-bond symmetrization behavior of $\delta$-AlOOH under the relevant pressure-temperature condition of the lower mantle using ab initio molecular dynamics (MD). The static symmetrization pressure of 30.0 GPa can be reduced to 17.0 GPa at 300 K by finite-temperature ($T$) statistics, closer to the experimental observation of $\sim $10.0 GPa. The symmetrization pressure obtained by MD simulation is related to $T$ by $P\,({\rm GPa})=13.9\,({\rm GPa})+0.01\,({\rm GPa/K})\times T\,({\rm K})$. We conclude that $\delta$-AlOOH in the lower mantle exists with symmetric hydrogen bond from its birthplace, or someplace slightly deeper, to the core-mantle boundary (CMB) along cold subducting slab geotherm. The bulk modulus decreases with $T$ and increases anomalously upon symmetrization: $K_{0}\,({\rm GPa})=181\,({\rm GPa})-0.013\,({\rm GPa/K})\times T\,({\rm K})$ for $\delta$-AlOOH with asymmetric hydrogen bond, and $K_{0}\,({\rm GPa})=216\,({\rm GPa})-0.013\,({\rm GPa/K})\times T\,({\rm K})$ for $\delta$-AlOOH with symmetric hydrogen bond. Our results provide an important insight into the existent form and properties of $\delta$-AlOOH in the lower mantle.
Received: 12 June 2017      Published: 27 September 2017
PACS:  83.10.Rs (Computer simulation of molecular and particle dynamics)  
  83.10.Tv (Structural and phase changes)  
  64.30.Jk (Equations of state of nonmetals)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos U1232204, 41473056, 11422431 and 11634001, the National Key Research and Development Program of China under Grant No 2016YFA0300901, and the National Basic Research Program of China under Grant No 2013CB934600.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/10/108301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I10/108301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Duan Kang
Ye-Xin Feng
Ying Yuan
Qi-Jun Ye
Feng Zhu
Hao-Yan Huo
Xin-Zheng Li
Xiang Wu
[1]Ohtani E 2005 Elements 1 25
[2]Ohtani E, Litasov K, Hosoya T, Kubo T and Kondo T 2004 Phys. Earth Planet. Inter. 143 255
[3]Sano A, Ohtani E, Kondo T, Hirao N, Sakai T, Sata N, Ohishi Y and Kikegawa T 1930 Geophys. Res. Lett. 35 1
[4]Ohira I, Ohtani E, Sakai T, Miyahara M, Hirao N, Ohishi Y and Nishijima M 2014 Earth Planet. Sci. Lett. 401 12
[5]Tsuchiya J, Tsuchiya T and Tsuneyuki S 2005 Am. Mineral. 90 44
[6]Peacock S M 1990 Science 248 329
[7]Holzapfel W 1972 J. Chem. Phys. 56 712
[8]Perrin C L 2010 Acc. Chem. Res. 43 1550
[9]Loubeyre P, Letoullec R, Wolanin E, Hanfland M and Hausermann D 1999 Nature 397 503
[10]Aoki K, Yamawaki H, Sakashita M and Fujihisa H 1996 Phys. Rev. B 54 15673
[11]Xu W, Greenberg E, Rozenberg G K, Pasternak M P, Bykova E, Boffa-Ballaran T, Dubrovinsky L, Prakapenka V, Hanfland M, Vekilova O Y, Simak S I and Abrikosov I A 2013 Phys. Rev. Lett. 111 175501
[12]Gleason A E, Quiroga C E, Suzuki A, Pentcheva R and Mao W L 2013 Earth Planet. Sci. Lett. 379 49
[13]Tsuchiya J, Tsuchiya T, Tsuneyuki S and Yamanaka T 2002 Geophys. Res. Lett. 29 15-1
[14]Sano-Furukawa A, Kagi H, Nagai T, Nakano S, Fukura S, Ushijima D, Iizuka R, Ohtani E and Yagi T 2009 Am. Mineral. 94 1255
[15]Kagi H, Ushijima D, Sano-Furukawa A, Komatsu K, Iizuka R, Nagai T and Nakano S 2010 J. Phys.: Conf. Ser. 215 012052
[16]Tsuchiya J and Tsuchiya T 2009 Phys. Earth Planet. Inter. 174 122
[17]Sano A, Ohtani E, Kubo T and Funakoshi K i 2004 J. Phys. Chem. Solids 65 1547
[18]Tsuchiya J, Tsuchiya T and Wentzcovitch R M 2008 Am. Mineral. 93 477
[19]Chen J, Ren X G, Li X Z, Alfè D and Wang E G 2014 J. Chem. Phys. 141 024501
[20]Zhang Q Y, Xie P, Wang X, Yu X W, Shi Z Q and Zhao S H 2016 Chin. Phys. B 25 066102
[21]Zeng H D, Zhu Z Y, Zhang J D and Cheng X L 2017 Chin. Phys. B 26 056101
[22]Lin W Q, Xu B, Chen L, Zhou F and Chen J L 2016 Acta Phys. Sin. 65 133102 (in Chinese)
[23]Zhu L, Wang Y G, Cao C C and Meng Y 2017 Chin. Phys. B 26 067101
[24]Bronstein Y, Depondt P and Finocchi F 2017 Eur. J. Mineral. 29 385
[25]Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[26]Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[27]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28]Sano-Furukawa A, Komatsu K, Vanpeteghem C B and Ohtani E 2008 Am. Mineral. 93 1558
[29]Kuribayashi T, Sano-Furukawa A and Nagase T 2014 Phys. Chem. Miner. 41 303
[30]Kang D D, Dai J Y, Sun H, Hou Y and Yuan J M 2013 Sci. Rep. 3 3272
[31]Birch F 1947 Phys. Rev. 71 809
[32]Mashino I, Murakami M and Ohtani E 2016 J. Geophys. Res. 121 595
[33]Brown J M and Shankland T J 1981 Geophys. J. Int. 66 579
[34]Nishi M, Irifune T, Gréaux S, Tange Y and Higo Y 2015 Phys. Earth Planet. Inter. 245 52
[35]Kirby S H, Stein S, Okal E A and Rubie D C 1996 Rev. Geophys. 34 261
[36]Eberle M A, Grasset O and Sotin C 2002 Phys. Earth Planet. Inter. 134 191
Related articles from Frontiers Journals
[1] QUAN Wei-Long, LI Hong-Xuan, ZHAO Fei, JI Li, DU Wen, ZHOU Hui-Di, CHEN Jian-Min. Molecular Dynamical Simulations on a-C:H Film Growth from C and H Atomic Flux: Effect of Incident Energy[J]. Chin. Phys. Lett., 2010, 27(8): 108301
[2] QUAN Wei-Long, LI Hong-Xuan, ZHAO Fei, JI Li, DU Wen, ZHOU Hui-Di, CHEN Jian-Min. Molecular Dynamic Simulation on Graphitization and Dehydrogenization of Hydrogenated Carbon Films in Vacuum[J]. Chin. Phys. Lett., 2010, 27(7): 108301
[3] YIN Bing, DONG Shun-Le. Molecular Dynamical Simulation of Water/Ice Phase Transitions within Carbon Nanotubes under Various Pressures[J]. Chin. Phys. Lett., 2009, 26(8): 108301
[4] Waqar Ahmad. Co-Adsorption of CO in NO-CO Reaction on a Metal Catalytic Surface Studied by Computer Simulation[J]. Chin. Phys. Lett., 2009, 26(3): 108301
[5] SUN Li-Zhen, LUO Meng-Bo. Hard Sphere Diffusion Behaviour of Polymer Translocating through Interacting Pores[J]. Chin. Phys. Lett., 2008, 25(11): 108301
[6] Waqar Ahmad. NO--CO--O2 Reaction on a Metal Catalytic Surface using Eley--Rideal Mechanism[J]. Chin. Phys. Lett., 2008, 25(10): 108301
[7] LIU Zheng-Bo, DONG Shun-Le, WANG Lin. Lattice Dynamical Simulation of Guest-Host Interaction in N2 Clathrate Hydrate[J]. Chin. Phys. Lett., 2008, 25(7): 108301
[8] M. Khalid, A. U. Qaisrani, M. G. Ullah. Transient Non-Thermal Mobility of CO for CO--NO Catalytic Reaction on Square Lattice: Monte Carlo Simulation[J]. Chin. Phys. Lett., 2008, 25(4): 108301
[9] Waqar AHMAD, Akhtar HUSSAIN. Water Gas Shift Reaction: A Monte Carlo Simulation[J]. Chin. Phys. Lett., 2006, 23(9): 108301
[10] Waqar Ahmad, Musa Kaleem Baloach. Monte Carlo Study of CO--NO Catalytic Surface Reaction Including CO--CO Repulsion[J]. Chin. Phys. Lett., 2006, 23(4): 108301
[11] A. U. Qaisrani, M. Khalid, M. K. Khan. Effect of Precursor Mechanism on CO--NO Catalytic Reaction on Body-Centred Cubic Structure: Monte Carlo Simulation[J]. Chin. Phys. Lett., 2005, 22(9): 108301
[12] M. Khalid, A. U. Qaisrani, W. Ahmad. Non-Thermal Effects on CO--NO Surface Catalytic Reaction on Square Surface: Monte Carlo Study[J]. Chin. Phys. Lett., 2005, 22(6): 108301
[13] A U. Qaisrani, M. Khalid, Musa Kaleem Baloch. Phase Diagram of Catalytic Oxidation of CO on the Surface--Subsurface of a Body-Centred Cubic Structure with Eley--Rideal Process: A Monte Carlo Simulation[J]. Chin. Phys. Lett., 2004, 21(9): 108301
[14] M. Khalid, K. M. Khan, A. U. Qaisrani, Q. N. Malik. Effect of Ballistic-Type Hot Atom Adsorption Mechanism on the Phase Diagram of Monomer-Dimer CO-O2 Surface Catalytic Reaction: A Monte Carlo Simulation[J]. Chin. Phys. Lett., 2004, 21(6): 108301
Viewed
Full text


Abstract