FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Multi-Channel NRZ/RZ-DPSK to CSRZ-DPSK Format Conversion Based on Nonlinear Polarization Rotation of SOA |
Ya-Ya Mao1**, Chong-Qing Wu2, Xin-Zhi Sheng2, Bo Liu1, Rahat Ullah1, Feng Tian1 |
1Institute of Optoelectronics, Nanjing University of Information Science & Technology, Nanjing 210044 2Key Lab of Luminescence and Optical Information Technology (Ministry of Education), School of Science, Beijing Jiaotong University, Beijing 100044
|
|
Cite this article: |
Ya-Ya Mao, Chong-Qing Wu, Xin-Zhi Sheng et al 2017 Chin. Phys. Lett. 34 104201 |
|
|
Abstract We present an all-optical nonreturn-to-zero/return-to-zero (NRZ/RZ) to carrier-suppressed return-to-zero (CSRZ) format conversion scheme for differential phase-shift keying (DPSK) signals. The conversion is based on nonlinear polarization rotation of a semiconductor optical amplifier (SOA). The 4-channel NRZ-DPSK or RZ-DPSK signals at 10 Gb/s are simultaneously converted to the corresponding CSRZ-DPSK signals, with $-$0.8 and 1.4 dB average power penalties, respectively. Additionally, high quality format conversion performances are shown with the optical spectra and eye diagrams.
|
|
Received: 22 May 2017
Published: 27 September 2017
|
|
PACS: |
42.79.Sz
|
(Optical communication systems, multiplexers, and demultiplexers?)
|
|
42.25.Kb
|
(Coherence)
|
|
42.65.Yj
|
(Optical parametric oscillators and amplifiers)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61425022, 61522501, 61675004, 61307086, 61475024, 61672290, 61475094 and 61605013, the National Basic Research Program of China under Grant Nos 2015AA015501, 2015AA015502, 2015AA015504, 2015AA016904 and 2015AA016901, and the Beijing Nova Program under Grant No Z141101001814048. |
|
|
[1] | Willner A E, Khaleghi S, Chitgarha M R and Yilmaz O F 2014 J. Lightwave Technol. 32 660 | [2] | Hui Z Q, Zhang B and Zhang J G 2016 J. Mod. Opt. 63 724 | [3] | Fu S, Zhong W, Shum P and Wen Y 2009 Opt. Commun. 282 2143 | [4] | Yu Y, Zhang X and Huang D 2007 Opt. Express 15 5693 | [5] | Dong J, Zhang X, Xu J, Huang D and Fu S 2007 Opt. Express 15 2907 | [6] | Wang L, Dai Y and Lei H 2011 IEEE Photon. Technol. Lett. 23 368 | [7] | Zou B, Yu Y, Wu W and Zhang X 2012 IEEE Photon. Technol. Lett. 24 1091 | [8] | Pan Y, Yan L and Yi A 2016 Opt. Lett. 41 1620 | [9] | Tabares A, Victor P and Josep P 2017 Optical Fiber Communication Conference p Th1K.3 | [10] | Yu Y, Zou B, Wu W and Zhang X 2011 Opt. Express 19 14720 | [11] | Sharif G M, Nguyen-the Q and Matsuura M 2014 IEICE Trans. Electron. E97. C 755 | [12] | Chattopadhyay T 2010 Appl. Opt. 49 5226 | [13] | Lize Y K and Wu X 2008 Opt. Express 16 4228 | [14] | Yao S, Fu S and Wang H 2014 J. Opt. Commun. Networking 6 355 | [15] | Wang J and Sun J 2009 Opt. Express 17 12555 | [16] | Zhang Z and Yu Y 2011 Opt. Express 19 12427 | [17] | Wang J and Sun J 2008 IEEE Photon. Technol. Lett. 20 1039 | [18] | Yang X, Mishra A K and Manning R J 2007 Electron. Lett. 43 469 | [19] | Mao Y, Sheng X and Wu C 2015 Appl. Opt. 54 8130 | [20] | Jiang H, Wen H and Han L 2007 IEEE Photon. Technol. Lett. 19 1985 | [21] | Poole C D and Wagner R E 1986 Electron. Lett. 22 1029 | [22] | Fu S, Zhong W, Shum P, Wu C and Zhou J 2007 IEEE Photon. Technol. Lett. 19 1931 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|