CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Temperature Impacts on Transient Receptor Potential Channel Mediated Calcium Oscillations in Astrocytes |
Yu-Hong Zhang, Hui Liu, Ying-Rong Han, Ya-Fei Chen, Su-Hua Zhang, Yong Zhan** |
School of Sciences, Hebei University of Technology, Tianjin 300401
|
|
Cite this article: |
Yu-Hong Zhang, Hui Liu, Ying-Rong Han et al 2017 Chin. Phys. Lett. 34 098701 |
|
|
Abstract We computationally study the possible effects of thermosensitive transient receptor potential (TRP) channels on the spontaneous calcium oscillations in astrocytes at various temperatures. Based on the previous model and the result of thermosensitive TRP channels' open probabilities, some meaningful conclusions are obtained. It is shown that the occurrence of calcium oscillations depends on temperature and the molar heat capacity difference between the closed and open channels ($\Delta C_{\rm p}$). The data indicate that calcium oscillations in astrocytes occurred in the ranges of 7$^{\circ}\!$C–11$^{\circ}\!$C and 27$^{\circ}\!$C–30$^{\circ}\!$C when $\Delta C_{\rm p}$ is 16 kJ$\cdot$mol$^{-1}\cdot$K$^{-1}$, and calcium oscillations only occur in the range of 27$^{\circ}\!$C–30$^{\circ}\!$C when $\Delta C_{\rm p}$ is 2 kJ$\cdot$mol$^{-1}\cdot$K$^{-1}$. In this study, the frequency decreases rapidly at temperatures ranging from 7$^{\circ}\!$C to 11$^{\circ}\!$C, and there is a contrary result in the range of 27$^{\circ}\!$C–30$^{\circ}\!$C.
|
|
Received: 12 October 2016
Published: 15 August 2017
|
|
PACS: |
87.16.Uv
|
(Active transport processes)
|
|
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11175055 and 11547013, and the Natural Science Foundation of Hebei Province under Grant No A2015202268. |
|
|
[1] | Bélanger M, Allaman I and Magistretti P J 2011 Cell Metab. 14 724 | [2] | Maragakis N J and Rothstein J D 2006 Nat. Rev. Neurol. 2 679 | [3] | Nedergaard M, Ransom B and Goldman S A 2003 Trends. Neurosci. 26 523 | [4] | Parpura V, Heneka M T, Montana V, Oliet S H, Schousboe A and Haydon P G 2012 J. Neurochem. 121 4 | [5] | Ransom B R and Ransom C B 2012 Astrocytes: Methods Protocols 814 3 | [6] | Wang D D and Bordey A 2008 Prog. Neurobiol. 86 342 | [7] | Bellaver B, Souza D G, Souza D O and Quincozes-Santos A 2014 Toxicol. Vitro 28 479 | [8] | Parpura V, Basarsky T A, Liu F, Jeftinija K and Jeftinija S 1994 Nature 369 744 | [9] | Bezzi P, Carmignoto G, Pasti L, Vesce S and Rossi D 1998 Nature 391 281 | [10] | Innocenti B, Parpura V and Haydon P G 2000 J. Neurosci. 20 1800 | [11] | Fields R D 2010 Sci. Signal. 3 tr5 | [12] | Morita M, Nakane A, Maekawa S and Kudo Y 2015 J. Pharmacol. Sci. 129 38 | [13] | Kalintseva Y I, Potanina A V, Pimashkin A S, Zaharov Y N, Mukhina I V, Kazantsev V B and Sem'yanov A V 2011 Moscow University Biological Sci. Bull. 66 55 | [14] | Kawamura M and Kawamura M 2011 Cell Calcium 49 249 | [15] | Scimemi A 2013 J. Physiol. 591 9 | [16] | Shigetomi E, Jackson-Weaver O, Huckstepp R T, O'Dell T J and Khakh B S 2013 J. Neurosci. 33 10143 | [17] | Shibasaki K, Ishizaki Y and Mandadi S 2013 Biochem. Biophys. Res. Commun. 441 327 | [18] | Butenko O, Dzamba D, Benesova J, Honsa P, Benfenati V, Rusnakova V, Ferroni S and Anderova M 2012 PLoS ONE 7 e39959 | [19] | Shibasaki K 2011 J. Neurosci. Res. 71 e18 | [20] | Lavrentovich M and Hemkin S 2008 J. Theor. Biol. 251 553 | [21] | Voets T 2012 Rev. Physiol. Biochem. Pharmacol. (Berlin: Springer) p 91 | [22] | Clapham D E and Miller C 2011 Proc. Natl. Acad. Sci. USA 108 19492 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|