Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 095201    DOI: 10.1088/0256-307X/34/9/095201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Heat Flux on EAST Divertor Plate in H-mode with LHCD/LHCD+NBI
Bo Shi1,2,3, Zhen-Dong Yang4, Bin Zhang1, Cheng Yang1, Kai-Fu Gan1, Mei-Wen Chen1, Jin-Hong Yang3, Hui Zhang3, Jun-Li Qi3, Xian-Zu Gong1, Xiao-Dong Zhang1, Wei-Hua Wang1,3**
1Institute of Plasma Physics, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031
2Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230031
3Institute of Applied Physics, Army Officer Academy, Hefei 230031
4Teaching and Research Department of Physics, Tongling University, Tongling 244000
Cite this article:   
Bo Shi, Zhen-Dong Yang, Bin Zhang et al  2017 Chin. Phys. Lett. 34 095201
Download: PDF(776KB)   PDF(mobile)(777KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the surface temperature measured by the infrared camera on the experimental advanced superconducting tokamak (EAST), the heat fluxes on the lower outer divertor target plate during H-mode with the lower-hybrid wave current drive (LHCD) only and with the LHCD combined with the neutral beam injection (NBI) are calculated by the DFLUX code and compared. The analyzed discharges are lower single null divertor configuration discharges. In the case with the LHCD only ($I_{\rm p}\sim 400$ kA, $P_{\rm LHCD}\sim2$ MW), ELM-free appears after L-H transition with the peak heat flux on the lower outer target plate less than 1 MW/m$^{2}$. However, there is no ELM-free appearing after the L-H transition in the case with the LHCD+NBI ($I_{\rm p}\sim300$ kA, $P_{\rm LHCD}+P_{\rm NBI}\sim2$ MW). The results show that the peak heat fluxes on the lower outer target plate in the LHCD+NBI H-mode cases are larger than those in the LHCD H-mode under the similar auxiliary heating power. This is because the heat flux profiles of the lower outer target plate as a function of plate location in ELMing with the LHCD+NBI are narrower than those with the LHCD only. The results are consistent with the results in terms of the scrape-off layer width observed in the EAST.
Received: 17 March 2017      Published: 15 August 2017
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.55.Rk (Power exhaust; divertors)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11505290, 51576208 and 11575239, and the National Magnetic Confinement Fusion Science Program of China under Grant Nos 2013GB113004 and 2015GB102004.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/9/095201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I9/095201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bo Shi
Zhen-Dong Yang
Bin Zhang
Cheng Yang
Kai-Fu Gan
Mei-Wen Chen
Jin-Hong Yang
Hui Zhang
Jun-Li Qi
Xian-Zu Gong
Xiao-Dong Zhang
Wei-Hua Wang
[1]Wagner F, Becker G and Behringer K 1982 Phys. Rev. Lett. 49 1408
[2]Federici G, Skinner C H and Brooks J N 2001 Nucl. Fusion 41 1967
[3]Wang L, Xu G S and Guo H Y 2012 Nucl. Fusion 52 063024
[4]Ahn J W, Maingi R and Canik J M 2014 Nucl. Fusion 54 122004
[5]Eich T, Herrmann A and Neuhauser J 2005 Plasma Phys. Control. Fusion 47 815
[6]Wan B N, Li J G and Guo H Y 2013 Nucl. Fusion 53 104006
[7]Wang L, Guo H Y and Xu G S 2014 Nucl. Fusion 54 114002
[8]Zhou Z B 2015 J. Fusion Energy 34 93
[9]Li W X, Song Y T and Ye M Y 2016 J. Fusion Energy 105 15
[10]Wang L, Makowski M A and Guo H Y 2016 22 International Conference on Plasma Surface Interactions in Controlled Fusion Device (Rome, Italy May 30–June 3, 2016)
[11]Eich T, Andrew P and Herrmann A 2007 Plasma Phys. Control. Fusion 49 573
[12]Gan K F, Li M H and Wang F M 2013 J. Nucl. Mater. 438 S364
[13]Zhang B, Gan K F and Gong X Z 2015 Plasma Sci. Technol. 17 831
Related articles from Frontiers Journals
[1] Longwen Yan, Jinming Gao, Xianggan Miao, Zhihui Huang, Na Wu, Wenjin Chen, Ting Wu, Weice Wang, Liang Liu, Xiaoxue He, Kaiyang Yi, Yu He, Lin Nie, Zhongbing Shi, and Wulv Zhong. Scaling Laws of Heat Flux Width in the HL-2A Closed Divertor Tokamak[J]. Chin. Phys. Lett., 2022, 39(11): 095201
[2] Chang Jiang, Chao Dong, and Ding Li. Transverse Rutherford Scattering of Electron-Ion Collision in a Uniformly Magnetized Plasma[J]. Chin. Phys. Lett., 2022, 39(2): 095201
[3] Ming Xu, Guoqiang Zhong, Baolong Hao, Wei Shen, Liqun Hu, Wei Chen, Zhiyong Qiu, Xuexi Zhang, Youjun Hu, Yingying Li, Hailin Zhao, Haiqing Liu, Bo Lyu, and the EAST Team. Excitation of RSAEs during Sawteeth-Like Oscillation in EAST[J]. Chin. Phys. Lett., 2021, 38(8): 095201
[4] Feng Wang , Rui Zhao , Zheng-Xiong Wang, Yue Zhang , Zhan-Hong Lin , Shi-Jie Liu , and CFETR Team. PTC: Full and Drift Particle Orbit Tracing Code for $\alpha$ Particles in Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(5): 095201
[5] Liming Yu, Wei Chen, Xiaoquan Ji, Peiwan Shi, Xuantong Ding, Zhongbing Shi, Ruirui Ma, Yumei Hou, Yonggao Li, Jiaxian Li, Jianyong Cao, Wulyu Zhong, Min Xu, and Xuru Duan. Observation of Multiple Broadband Alfvénic Chirping Modes in HL-2A NBI Plasmas[J]. Chin. Phys. Lett., 2021, 38(5): 095201
[6] Tong Liu , Lai Wei , Feng Wang, and Zheng-Xiong Wang . Coriolis Force Effect on Suppression of Neo-Classical Tearing Mode Triggered Explosive Burst in Reversed Magnetic Shear Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(4): 095201
[7] Hao Shi, Wenlu Zhang, Chao Dong, Jian Bao, Zhihong Lin, Jintao Cao, and Ding Li. Temperature Gradient, Toroidal and Ion FLR Effects on Drift-Tearing Modes[J]. Chin. Phys. Lett., 2020, 37(8): 095201
[8] Wei Hu, Hong-Ying Feng, Wen-Lu Zhang. Comparison of ITG and TEM Microturbulence in DIII–D Tokamak[J]. Chin. Phys. Lett., 2019, 36(8): 095201
[9] Yan-Bin Wu, Tian-Yang Xia, Fang-Chuan Zhong, Bin Gui, EAST Team. Impact of Sheath Boundary Conditions and Magnetic Flutter on Evolution and Distribution of Transient Particle and Heat Fluxes in the Edge-Localized Mode Burst by Experimental Advanced Superconducting Tokamak Simulation[J]. Chin. Phys. Lett., 2019, 36(4): 095201
[10] Wei Hu, Hong-Ying Feng, Chao Dong. Collisional Effects on Drift Wave Microturbulence in Tokamak Plasmas[J]. Chin. Phys. Lett., 2018, 35(10): 095201
[11] Wen Yang, Ding Li, Xue-qiao Xu. Effect of Hyper-Resistivity on Nonlinear Tearing Modes[J]. Chin. Phys. Lett., 2018, 35(6): 095201
[12] Jing-Bo Lin, Wen-Lu Zhang, Peng-Fei Liu, Chao Dong, Jin-Tao Cao, Ding Li. Particle Trajectory Integrator in Guiding Center Phase Space[J]. Chin. Phys. Lett., 2018, 35(2): 095201
[13] Zhong-Chao Sun, Zi-Wei Lian, Wei-Na Qiao, Jian-Gang Yu, Wen-Jia Han, Qing-Wei Fu, Kai-Gui Zhu. Microstructure and Deuterium Retention of Tungsten Deposited by Hollow Cathode Discharge in Deuterium Plasma[J]. Chin. Phys. Lett., 2017, 34(12): 095201
[14] N. Hasanvand, S. Meshkani, M. Ghoranneviss. The Diffusion Coefficient Using Sawtooth Oscillation in IR-T1 Tokamak[J]. Chin. Phys. Lett., 2017, 34(8): 095201
[15] N. Hasanvand, M. R. Riazifar, R. Alipour, S. Meshkani, M. Ghoranneviss. Improving Plasma Confinement by Controlling Hard X-Ray[J]. Chin. Phys. Lett., 2016, 33(11): 095201
Viewed
Full text


Abstract