Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 090601    DOI: 10.1088/0256-307X/34/9/090601
GENERAL |
Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals
Zhao-Min Jia1,2,4**, Xu-Hai Yang1,2,3, Bao-Qi Sun1,2,3, Xiao-Ping Zhou5, Bo Xiang4, Xin-Yu Dou4
1National Time Service Centre, Chinese Academy of Sciences, Xi'an 710600
2School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049
3Key Laboratory of Precise Positioning and Timing Technology, Chinese Academy of Sciences, Xi'an 710600
4Intelligence and Information Engineering College, Tangshan University, Tangshan 063020
5China Academy of Space Technology (Xi'an), Xi'an 710000
Cite this article:   
Zhao-Min Jia, Xu-Hai Yang, Bao-Qi Sun et al  2017 Chin. Phys. Lett. 34 090601
Download: PDF(500KB)   PDF(mobile)(499KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a new digital phase lock technology to achieve the frequency control and transformation through high precision multi-cycle group synchronization between signals without the frequency transformation circuit. In the case of digital sampling, the passing zero point of the phase of the controlled signal has the phase step characteristic, the phase step of the passing zero point is monotonic continuous with high resolution in the phase lock process, and using the border effect of digital fuzzy area, the gate can synchronize with the two signals, the quantization error is reduced. This technique is quite different from the existing methods of frequency transformation and frequency synthesis, the phase change characteristic between the periodic signals with different nominal is used. The phase change has the periodic phenomenon, and it has the high resolution step value. With the application of the physical law, the noise is reduced because of simplifying frequency transformation circuits, and the phase is locked with high precision. The regular phase change between frequency signals is only used for frequency measurement, and the change has evident randomness, but this randomness is greatly reduced in frequency control, and the certainty of the process result is clear. The experiment shows that the short term frequency stability can reach 10$^{-12}$/s orders of magnitude.
Received: 19 June 2017      Published: 15 August 2017
PACS:  06.30.Ft (Time and frequency)  
  06.20.Dk (Measurement and error theory)  
  07.05.Fb (Design of experiments)  
  07.50.Qx (Signal processing electronics)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11173026, and the International GNSS Monitoring and Assessment System (iGMAS) of National Time Service Centre.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/9/090601       OR      https://cpl.iphy.ac.cn/Y2017/V34/I9/090601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhao-Min Jia
Xu-Hai Yang
Bao-Qi Sun
Xiao-Ping Zhou
Bo Xiang
Xin-Yu Dou
[1]Sturm S, Köhler F, Zatorski J et al 2014 Nature 506 467
[2]Yu J G, Zhou W, Du B Q et al 2012 Chin. Phys. Lett. 29 070601
[3]Li Z Q, Zhou W, Chen F X et al 2010 Chin. Phys. B 19 090601
[4]Diddams S A, Bergquist J C, Jefferts S R and Oates C W 2004 Science 306 1318
[5]Schröder G F, Levitt M and Brunger A T 2010 Nature 464 1218
[6]Bosco G C, Garcocz M, Lind K, Pogliano U, Rietveld G, Tarasso V, Voljc B and Zachovalová V N 2011 IEEE Trans. Instrum. Meas. 60 2359
[7]Zhou W, Zhou H, Fan W J, Wang H, Qian S X and Jiang W N 2008 Proc. IEEE Int. Frequency Control Symp. (USA Honolulu 19–21 May 2008) p 468
[8]Miao M, Zhou W and Wang B 2012 Rev. Sci. Instrum. 83 024706
[9]Bai L N, Cao Y H, Liu L J et al 2014 Chin. Phys. Lett. 31 098402
[10]Ye Y X, Xuan Z Q, Gu J F et al 2014 Chin. Phys. B 23 120601
[11]Ihlefeld C M, Burns B M and Youngquist R C 2013 IEEE Trans. Instrum. Meas. 62 205
[12]Lee K Y et al 2012 IEEE Trans. Instrum. Meas. 61 2924
[13]Zhou W, Li Z Q, Bai L N et al 2014 Chin. Phys. Lett. 31 100602
[14]Bai L N, Su X, Zhou W et al 2015 Rev. Sci. Instrum. 86 015106
[15]Sesia I, Galleani L and Tavella P 2011 IEEE Trans. Aerosp. Electron. Syst. 47 884
[16]Anne L C, Jürgen A, Jelmer J R, Daniel O, Niels K and Eugene S P 2010 New J. Phys. 12 065032
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 090601
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 090601
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 090601
[4] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 090601
[5] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 090601
[6] Chao-qun Ma, Li-Fei Wu, Jiao Gu, Yan-He Chen, Guo-Qing Chen. Delay Effect on Coherent Transfer of Optical Frequency Based on a Triple-Pass Scheme[J]. Chin. Phys. Lett., 2018, 35(8): 090601
[7] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 090601
[8] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 090601
[9] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 090601
[10] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 090601
[11] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 090601
[12] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 090601
[13] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 090601
[14] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 090601
[15] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 090601
Viewed
Full text


Abstract