Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 090301    DOI: 10.1088/0256-307X/34/9/090301
GENERAL |
Sound Wave of Spin–Orbit Coupled Bose–Einstein Condensates in Optical Lattice
Xu-Dan Chai, Zi-Fa Yu, Ai-Xia Zhang, Ju-Kui Xue**
Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070
Cite this article:   
Xu-Dan Chai, Zi-Fa Yu, Ai-Xia Zhang et al  2017 Chin. Phys. Lett. 34 090301
Download: PDF(824KB)   PDF(mobile)(765KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the phonon mode excitation of spin–orbit (SO) coupled Bose–Einstein condensates trapped in a one-dimensional optical lattice. The sound speed of the system is obtained analytically. Softening of the phonon mode, i.e., the vanishing of sound speed, in the optical lattice is revealed. When the lattice is absent, the softening of phonon mode occurs only at the phase transition point, which is not influenced by the atomic interaction and Raman coupling when the SO coupling is strong. However, when the lattice is present, the softening of phonon modes can take place in a regime near the phase transition point. Particularly, the regime is widened as lattice strength and SO coupling increase or atomic interaction decreases. The suppression of sound speed by the lattice strongly depends on atomic interaction, Raman coupling, and SO coupling. Furthermore, we find that the sound speed in plane wave phase regime and zero-momentum phase regime behaves with very different characteristics as Raman coupling and SO coupling change. In zero-momentum phase regime, sound speed monotonically increases/decreases with Raman coupling/SO coupling, while in plane wave phase regime, sound speed can either increase or decrease with Raman coupling and SO coupling, which depends on atomic interaction.
Received: 02 May 2017      Published: 15 August 2017
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11305132, 11274255 and 11475027, and the Scientific Research Project of Gansu Higher Education under Grant No 2016A-005.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/9/090301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I9/090301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xu-Dan Chai
Zi-Fa Yu
Ai-Xia Zhang
Ju-Kui Xue
[1]Jin D S et al 1996 Phys. Rev. Lett. 77 420
[2]Mewes M O et al 1996 Phys. Rev. Lett. 77 988
[3]Lin Y J et al 2011 Nature 471 83
[4]Zhang J Y et al 2012 Phys. Rev. Lett. 109 115301
[5]Wang P J et al 2012 Phys. Rev. Lett. 109 095301
[6]Cheuk L W et al 2012 Phys. Rev. Lett. 109 095302
[7]Li Y et al 2012 Phys. Rev. Lett. 108 225301
[8]Zhang Y C et al 2015 Phys. Rev. Lett. 115 253902
[9]Sakaguchi H et al 2014 Phys. Rev. E 89 032920
[10]Achilleos V et al 2013 Phys. Rev. Lett. 110 264101
[11]Zheng W and Li Z B 2012 Phys. Rev. A 85 053607
[12]Martone G I et al 2012 Phys. Rev. A 86 063621
[13]Zhang Y C et al 2016 Phys. Rev. A 94 033635
[14]Khamehchi M A et al 2014 Phys. Rev. A 90 063624
[15]Ji S C et al 2015 Phys. Rev. Lett. 114 105301
[16]Hamner C et al 2015 Phys. Rev. Lett. 114 070401
[17]Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[18]Fu L et al 2007 Phys. Rev. Lett. 98 106803
[19]Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[20]Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[21]Chen Z and Liang Z X 2016 Phys. Rev. A 93 013601
[22]Zhang Y P and Zhang C W 2013 Phys. Rev. A 87 023611
[23]Toniolo D and Linder J 2014 Phys. Rev. A 89 061605(R)
[24]Zhai H 2015 Rep. Prog. Phys. 78 026001
[25]Sun Q et al 2013 Phys. Rev. A 88 063637
[26]Taylor E and Zaremba E 2003 Phys. Rev. A 68 053611
[27]Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039
[28]Dresselhaus G 1955 Phys. Rev. 100 580
[29]Menotti C et al 2004 Phys. Rev. A 70 023609
[30]Zhang A X and Xue J K 2009 Phys. Rev. A 80 043617
[31]Liang Z X et al 2008 Phys. Rev. A 78 023622
Related articles from Frontiers Journals
[1] Haipeng Xue, Lingchii Kong, and Biao Wu. Logarithmic Quantum Time Crystal[J]. Chin. Phys. Lett., 2022, 39(8): 090301
[2] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 090301
[3] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 090301
[4] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 090301
[5] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 090301
[6] Hao Li, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Quantized Superfluid Vortex Filaments Induced by the Axial Flow Effect[J]. Chin. Phys. Lett., 2020, 37(3): 090301
[7] Yu Mo, Cong Zhang, Shiping Feng, Shi-Jie Yang. Solitonic Diffusion of Wavepackets in One-Dimensional Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(12): 090301
[8] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 090301
[9] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 090301
[10] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 090301
[11] Bao-Guo Yang, Peng-Ju Tang, Xin-Xin Guo, Xu-Zong Chen, Biao Wu, Xiao-Ji Zhou. Period-Doubled Bloch States in a Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2018, 35(7): 090301
[12] Peng Peng, Liang-Hui Huang, Dong-Hao Li, Zeng-Ming Meng, Peng-Jun Wang, Jing Zhang. Experimental Observation of Spin-Exchange in Ultracold Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(3): 090301
[13] Zheng Zhou, Hong-Hua Zhong, Bo Zhu, Fa-Xin Xiao, Ke Zhu, Jin-Tao Tan. Collision Dynamics of Dissipative Matter-Wave Solitons in a Perturbed Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(11): 090301
[14] Yu-E Li, Ju-Kui Xue. Moving Matter-Wave Solitons in Spin–Orbit Coupled Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2016, 33(10): 090301
[15] Xin Zhang, Zi-Fa Yu, Ju-Kui Xue. Coherence of Disordered Bosonic Gas with Two- and Three-Body Interactions[J]. Chin. Phys. Lett., 2016, 33(04): 090301
Viewed
Full text


Abstract