Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 090202    DOI: 10.1088/0256-307X/34/9/090202
GENERAL |
A Multi-Symplectic Compact Method for the Two-Component Camassa–Holm Equation with Singular Solutions
Xiang Li1, Xu Qian1,2**, Bo-Ya Zhang1, Song-He Song1
1College of Science and State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073
2Academy of Ocean Science and Engineering, National University of Defense Technology, Changsha 410073
Cite this article:   
Xiang Li, Xu Qian, Bo-Ya Zhang et al  2017 Chin. Phys. Lett. 34 090202
Download: PDF(3299KB)   PDF(mobile)(3299KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The two-component Camassa–Holm equation includes many intriguing phenomena. We propose a multi-symplectic compact method to solve the two-component Camassa–Holm equation. Based on its multi-symplectic formulation, the proposed method is derived by the sixth-order compact finite difference method in spatial discretization and the symplectic implicit midpoint scheme in temporal discretization. Numerical experiments finely describe the velocity and density variables in the two-component integrable system and distinctly display the evolvement of the singular solutions. Moreover, the proposed method shows good conservative properties during long-time numerical simulation.
Received: 14 June 2017      Published: 15 August 2017
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  02.70.Bf (Finite-difference methods)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11571366 and 11501570, the Open Foundation of State Key Laboratory of High Performance Computing of China, the Research Fund of the National University of Defense Technology under Grant No JC15-02-02, and the Fund from HPCL.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/9/090202       OR      https://cpl.iphy.ac.cn/Y2017/V34/I9/090202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiang Li
Xu Qian
Bo-Ya Zhang
Song-He Song
[1]Camassa R and Holm D D 1993 Phys. Rev. Lett. 71 1661
[2]Camassa R, Holm D D and Hyman J M 1994 Adv. Appl. Mech. 31 1
[3]Constantin A and Ivanov R I 2008 Phys. Lett. A 372 7129
[4]McKean H P 1998 Asian J. Math. 2 867
[5]Constantin A, Gerdjikov V S and Ivanov R I 2006 Inverse Probl. 22 2197
[6]Chen M, Liu S and Zhang Y 2006 Lett. Math. Phys. 75 1
[7]Holm D D, Ó L and Tronci C 2009 Phys. Rev. E 79 016601
[8]Mustafa O G 2009 Wave Motion 46 397
[9]Yu S 2012 Appl. Anal. 91 1321
[10]Cohen D, Matsuo T and Raynaud X 2014 J. Nonlinear. Math. Phys. 21 442
[11]Dehghan M and Taleei A 2010 Comput. Phys. Commun. 181 43
[12]Ma Y P, Kong L H and Hong J L 2011 Comput. Math. Appl. 61 319
[13]Cohen D, Owren B and Raynaud X 2008 J. Comput. Phys. 227 5492
[14]Zhu H J, Song S H and Tang Y F 2011 Comput. Phys. Commun. 182 616
[15]Wang Y S, Li Q H and Song Y Z 2008 Chin. Phys. Lett. 25 1538
[16]Sun J Q and Qin M Z 2003 Comput. Phys. Commun. 155 221
[17]Hu W P and Deng Z C 2008 Chin. Phys. B 17 3923
[18]Hong J L and Li C 2006 J. Comput. Phys. 211 448
Related articles from Frontiers Journals
[1] Bin Cheng, Ya-Ming Chen, Xiao-Gang Deng. Solution to the Fokker–Planck Equation with Piecewise-Constant Drift *[J]. Chin. Phys. Lett., 0, (): 090202
[2] Bin Cheng, Ya-Ming Chen, Xiao-Gang Deng. Solution to the Fokker–Planck Equation with Piecewise-Constant Drift[J]. Chin. Phys. Lett., 2020, 37(6): 090202
[3] Chuan-Jie Hu, Ya-Li Zeng, Yi-Neng Liu, Huan-Yang Chen. Three-Dimensional Broadband Acoustic Waveguide Cloak[J]. Chin. Phys. Lett., 2020, 37(5): 090202
[4] Shou-Qing Jia. Finite Volume Time Domain with the Green Function Method for Electromagnetic Scattering in Schwarzschild Spacetime[J]. Chin. Phys. Lett., 2019, 36(1): 090202
[5] Hong-Mei Zhang, Cheng Cai, Xiu-Jun Fu. Self-Similar Transformation and Vertex Configurations of the Octagonal Ammann–Beenker Tiling[J]. Chin. Phys. Lett., 2018, 35(6): 090202
[6] Xiang Li, Xu Qian, Ling-Yan Tang, Song-He Song. A High-Order Conservative Numerical Method for Gross–Pitaevskii Equation with Time-Varying Coefficients in Modeling BEC[J]. Chin. Phys. Lett., 2017, 34(6): 090202
[7] Jian Liu, Bao-He Li, Xiao-Song Chen. Generalized Master Equation for Space-Time Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2017, 34(5): 090202
[8] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 090202
[9] Ling-Yan Lin, Yu Qiu, Yu Zhang, Hao Zhang. Analysis of Effect of Zn(O,S) Buffer Layer Properties on CZTS Solar Cell Performance Using AMPS[J]. Chin. Phys. Lett., 2016, 33(10): 090202
[10] Mahdi Ezheiyan, Hossein Sadeghi, Mohammad-Hossein Tavakoli. Thermal Analysis Simulation of Germanium Zone Refining Process Assuming a Constant Radio-Frequency Heating Source[J]. Chin. Phys. Lett., 2016, 33(05): 090202
[11] Diwaker, Aniruddha Chakraborty. Transfer Matrix Approach for Two-State Scattering Problem with Arbitrary Coupling[J]. Chin. Phys. Lett., 2015, 32(07): 090202
[12] JI Ying, WANG Ya-Wei. Bursting Behavior in the Piece-Wise Linear Planar Neuron Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2015, 32(4): 090202
[13] TAO Yu-Cheng, CUI Ming-Zhu, LI Hai-Hong, YANG Jun-Zhong. Collective Dynamics for Network-Organized Identical Excitable Nodes[J]. Chin. Phys. Lett., 2015, 32(02): 090202
[14] M. N. Stankov, M. D. Petković, V. Lj. Marković, S. N. Stamenković, A. P. Jovanović. The Applicability of Fluid Model to Electrical Breakdown and Glow Discharge Modeling in Argon[J]. Chin. Phys. Lett., 2015, 32(02): 090202
[15] CAI Wen-Jun, WANG Yu-Shun, SONG Yong-Zhong. Numerical Simulation of Rogue Waves by the Local Discontinuous Galerkin Method[J]. Chin. Phys. Lett., 2014, 31(04): 090202
Viewed
Full text


Abstract