FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence |
Shu-Shan Huang1,2,3, Yu Zhang1,2,3, Yong-Ping Liao1,2,3, Cheng-Ao Yang1,2,3, Xiao-Li Chai1,2,3, Ying-Qiang Xu1,2,3, Hai-Qiao Ni1,2,3, Zhi-Chuan Niu1,2,3** |
1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049 3Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
Shu-Shan Huang, Yu Zhang, Yong-Ping Liao et al 2017 Chin. Phys. Lett. 34 084202 |
|
|
Abstract We report high-power single-spatial-mode type-I GaSb-based tapered lasers fabricated on the InGaSb/AlGaAsSb material system. A straight ridge and three different tapered waveguide structures with varying flare angles are fabricated to optimize the output power and spatial-mode performance. The best devices exhibit single-spatial-mode operation with room-temperature output power up to 350 mW in continuous-wave mode at an emission wavelength around 2.0 μm with a very small far-field lateral divergence angle, which is beyond state of the art in terms of single-spatial-mode output power.
|
|
Received: 22 January 2017
Published: 22 July 2017
|
|
|
|
Fund: Supported by the National Basic Research Program of China under Grant Nos 2014CB643903 and 2013CB932904, the National Natural Science Foundation of China under Grant Nos 61435012 and 61290303, and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB01010200. |
|
|
[1] | Scholle K, Lamrini S, Koopmann P and Fuhrberg P 2010 Frontiers in Guided Wave Optics and Optoelectronics (Rijeka: INTECH) chap 21 p 471 | [2] | Bochkarev A É Dolginov L M, Drakin A E E, Eliseev P G and Sverdlov B N 1988 Quantum Electron. 18 1362 | [3] | Baranov A N, Fouillant C, Grunberg P, Lazzari J L, Gaillard S and Joullie A 1994 Appl. Phys. Lett. 65 616 | [4] | Budni P A, Ibach C R, Setzler S D, Gustafson E J, Castro R T and Chicklis E P 2003 Opt. Lett. 28 1016 | [5] | Zhang Y G, Li A Z, Zheng Y L, Lin C and Jian G Z 2001 J. Cryst. Growth 227 582 | [6] | Rattunde M, Mermelstein C, Simanowski S, Schmitz J, Kiefer R, Herres N, Fuchs F, Walther M and Wagner J 2000 IEEE Int. Symp. Compound Semicond. (Monterey California, 2–5 October 2000) | [7] | Zhang Y G, Zheng Y L, Lin C, Li A Z and Liu S 2006 Chin. Phys. Lett. 23 2262 | [8] | Vizbaras A, Dvinelis E, Trinkūnas A, Šimonytė I, Greibus M, Kaušylas M, Žukauskas T, Songaila R and Vizbaras K 2014 Proc. SPIE 9081 90810 | [9] | Bach T, Herrmann T R W, Haecker A, Michel M S and Gross A 2009 BJU Int. 104 361 | [10] | Orii K, Nakahara A, Takase Y, Ozaki A, Sakita T and Iwasaki Y 1981 Surgery 90 120 | [11] | Swint R B, Yeoh T S, Elarde V C, Zediker M S and Coleman J J 2003 Proc. SPIE 4973 10 | [12] | Dente G C 2001 IEEE J. Quantum Electron. 37 1650 | [13] | Vizbaras A, Dvinelis E, Greibus M, Trinkūnas A, Kovalenkovas D, Šimonytė I and Vizbaras K 2013 Proc. SPIE 8993 899319 | [14] | Vizbaras K, Dvinelis E, Šimonytė I, Trinkūnas A, Greibus M, Songaila R, Žukauskas T, Kaušylas M and Vizbaras A 2015 Appl. Phys. Lett. 107 011103 | [15] | Liao Y P, Zhang Y, Xing J L, Wei S H, Hao H Y, Wang G W, Xu Y Q and Niu Z C 2015 J. Semicond. 36 054007 | [16] | Huber A E, Yeoh T S, Swint R B, Woo C Y and Lee K E 2001 IEEE Photon. Technol. Lett. 13 1064 | [17] | Sagawa M, Hiramoto K, Toyonaka T, Kikawa T, Fujisaki S and Uomi K 1997 IEEE J. Sel. Top. Quantum Electron. 3 666 | [18] | Crump P, Decker J, Winterfeldt M, Fricke J, Maaßdorf A, Erbert G and Tränkle G 2015 Proc. SPIE 9348 93480D | [19] | Paschke K, Sumpf B, Dittmar F, Erbert G, Staske R, Wenzel H and Tränkle G 2005 IEEE J. Sel. Top. Quantum Electron. 11 1223 | [20] | Paschke K, Bugge F, Blume G, Feise D and Erbert G 2015 Opt. Lett. 40 100 | [21] | Muller M, Bauer A, Lehnhardt T, Kamp M and Forchel A 2008 IEEE Photon. Technol. Lett. 20 2162–2164 | [22] | Xing J L, Zhang Y, Liao Y P, Wang J, Xiang W, Xu Y Q, Wang G W, Ren Z W and Niu Z C 2014 Chin. Phys. Lett. 31 054204 | [23] | Yang R Q, Hill C J, Yang B H, Wong C M, Muller R E and Echternach P M 2004 Appl. Phys. Lett. 84 3699 | [24] | Qiu B, Mcdougall S D, Liu X, Bacchin G and Marsh J H 2005 IEEE J. Quantum Electron. 41 1124 | [25] | Wang L J, Tong C Z, Tian S C, Shu S L, Zeng Y G, Rong J M, Wu H, Xing E B, Ning Y Q and Wang L J 2015 IEEE J. Sel. Top. Quantum Electron. 21 343 | [26] | Pietrzak A, Wenzel H, Erbert G and Tränkle G 2008 Opt. Lett. 33 2188 | [27] | Malag A, Dabrowska E, Teodorczyk M, Sobczak G, Kozlowska A and Kalbarczyk J 2012 IEEE J. Quantum Electron. 48 465 | [28] | Hung C T and Lu T C 2012 IEEE J. Quantum Electron. 49 127 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|