Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 084202    DOI: 10.1088/0256-307X/34/8/084202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence
Shu-Shan Huang1,2,3, Yu Zhang1,2,3, Yong-Ping Liao1,2,3, Cheng-Ao Yang1,2,3, Xiao-Li Chai1,2,3, Ying-Qiang Xu1,2,3, Hai-Qiao Ni1,2,3, Zhi-Chuan Niu1,2,3**
1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049
3Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Shu-Shan Huang, Yu Zhang, Yong-Ping Liao et al  2017 Chin. Phys. Lett. 34 084202
Download: PDF(783KB)   PDF(mobile)(779KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report high-power single-spatial-mode type-I GaSb-based tapered lasers fabricated on the InGaSb/AlGaAsSb material system. A straight ridge and three different tapered waveguide structures with varying flare angles are fabricated to optimize the output power and spatial-mode performance. The best devices exhibit single-spatial-mode operation with room-temperature output power up to 350 mW in continuous-wave mode at an emission wavelength around 2.0 μm with a very small far-field lateral divergence angle, which is beyond state of the art in terms of single-spatial-mode output power.
Received: 22 January 2017      Published: 22 July 2017
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  78.55.Cr (III-V semiconductors)  
  78.67.De (Quantum wells)  
Fund: Supported by the National Basic Research Program of China under Grant Nos 2014CB643903 and 2013CB932904, the National Natural Science Foundation of China under Grant Nos 61435012 and 61290303, and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB01010200.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/084202       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/084202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shu-Shan Huang
Yu Zhang
Yong-Ping Liao
Cheng-Ao Yang
Xiao-Li Chai
Ying-Qiang Xu
Hai-Qiao Ni
Zhi-Chuan Niu
[1]Scholle K, Lamrini S, Koopmann P and Fuhrberg P 2010 Frontiers in Guided Wave Optics and Optoelectronics (Rijeka: INTECH) chap 21 p 471
[2]Bochkarev A É Dolginov L M, Drakin A E E, Eliseev P G and Sverdlov B N 1988 Quantum Electron. 18 1362
[3]Baranov A N, Fouillant C, Grunberg P, Lazzari J L, Gaillard S and Joullie A 1994 Appl. Phys. Lett. 65 616
[4]Budni P A, Ibach C R, Setzler S D, Gustafson E J, Castro R T and Chicklis E P 2003 Opt. Lett. 28 1016
[5]Zhang Y G, Li A Z, Zheng Y L, Lin C and Jian G Z 2001 J. Cryst. Growth 227 582
[6]Rattunde M, Mermelstein C, Simanowski S, Schmitz J, Kiefer R, Herres N, Fuchs F, Walther M and Wagner J 2000 IEEE Int. Symp. Compound Semicond. (Monterey California, 2–5 October 2000)
[7]Zhang Y G, Zheng Y L, Lin C, Li A Z and Liu S 2006 Chin. Phys. Lett. 23 2262
[8]Vizbaras A, Dvinelis E, Trinkūnas A, Šimonytė I, Greibus M, Kaušylas M, Žukauskas T, Songaila R and Vizbaras K 2014 Proc. SPIE 9081 90810
[9]Bach T, Herrmann T R W, Haecker A, Michel M S and Gross A 2009 BJU Int. 104 361
[10]Orii K, Nakahara A, Takase Y, Ozaki A, Sakita T and Iwasaki Y 1981 Surgery 90 120
[11]Swint R B, Yeoh T S, Elarde V C, Zediker M S and Coleman J J 2003 Proc. SPIE 4973 10
[12]Dente G C 2001 IEEE J. Quantum Electron. 37 1650
[13]Vizbaras A, Dvinelis E, Greibus M, Trinkūnas A, Kovalenkovas D, Šimonytė I and Vizbaras K 2013 Proc. SPIE 8993 899319
[14]Vizbaras K, Dvinelis E, Šimonytė I, Trinkūnas A, Greibus M, Songaila R, Žukauskas T, Kaušylas M and Vizbaras A 2015 Appl. Phys. Lett. 107 011103
[15]Liao Y P, Zhang Y, Xing J L, Wei S H, Hao H Y, Wang G W, Xu Y Q and Niu Z C 2015 J. Semicond. 36 054007
[16]Huber A E, Yeoh T S, Swint R B, Woo C Y and Lee K E 2001 IEEE Photon. Technol. Lett. 13 1064
[17]Sagawa M, Hiramoto K, Toyonaka T, Kikawa T, Fujisaki S and Uomi K 1997 IEEE J. Sel. Top. Quantum Electron. 3 666
[18]Crump P, Decker J, Winterfeldt M, Fricke J, Maaßdorf A, Erbert G and Tränkle G 2015 Proc. SPIE 9348 93480D
[19]Paschke K, Sumpf B, Dittmar F, Erbert G, Staske R, Wenzel H and Tränkle G 2005 IEEE J. Sel. Top. Quantum Electron. 11 1223
[20]Paschke K, Bugge F, Blume G, Feise D and Erbert G 2015 Opt. Lett. 40 100
[21]Muller M, Bauer A, Lehnhardt T, Kamp M and Forchel A 2008 IEEE Photon. Technol. Lett. 20 2162–2164
[22]Xing J L, Zhang Y, Liao Y P, Wang J, Xiang W, Xu Y Q, Wang G W, Ren Z W and Niu Z C 2014 Chin. Phys. Lett. 31 054204
[23]Yang R Q, Hill C J, Yang B H, Wong C M, Muller R E and Echternach P M 2004 Appl. Phys. Lett. 84 3699
[24]Qiu B, Mcdougall S D, Liu X, Bacchin G and Marsh J H 2005 IEEE J. Quantum Electron. 41 1124
[25]Wang L J, Tong C Z, Tian S C, Shu S L, Zeng Y G, Rong J M, Wu H, Xing E B, Ning Y Q and Wang L J 2015 IEEE J. Sel. Top. Quantum Electron. 21 343
[26]Pietrzak A, Wenzel H, Erbert G and Tränkle G 2008 Opt. Lett. 33 2188
[27]Malag A, Dabrowska E, Teodorczyk M, Sobczak G, Kozlowska A and Kalbarczyk J 2012 IEEE J. Quantum Electron. 48 465
[28]Hung C T and Lu T C 2012 IEEE J. Quantum Electron. 49 127
Related articles from Frontiers Journals
[1] Yu Ma, Wei-Jiang Li Yun-Fei, Xu, Jun-Qi Liu, Ning Zhuo, Ke Yang, Jin-Chuan Zhang, Shen-Qiang Zhai, Shu-Man Liu, Li-Jun Wang, and Feng-Qi Liu. Flat Top Optical Frequency Combs Based on a Single-Core Quantum Cascade Laser at Wavelength of $\sim$ 8.7 μm[J]. Chin. Phys. Lett., 2023, 40(1): 084202
[2] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser *[J]. Chin. Phys. Lett., 0, (): 084202
[3] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser[J]. Chin. Phys. Lett., 2020, 37(6): 084202
[4] Yi-Chen Xu, Zhi-Min Wang, Feng-Feng Zhang, Rui-Nan Yang, Xu-Chao Liu, Yue Song, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. High-Efficiency Spectral-Beam-Combined 930nm Diode Laser Source[J]. Chin. Phys. Lett., 2020, 37(5): 084202
[5] Rui Guo, Ye-Wen Jiang, Ting-Hao Liu, Qiang Liu, Ma-Li Gong. Pulse Characteristics of Cavityless Solid-State Laser[J]. Chin. Phys. Lett., 2020, 37(4): 084202
[6] Ting Fu, Yu-Fei Wang, Xue-You Wang, Xu-Yan Zhou, Wan-Hua Zheng. Mode Control of Quasi-PT Symmetry in Laterally Multi-Mode Double Ridge Semiconductor Laser[J]. Chin. Phys. Lett., 2020, 37(4): 084202
[7] Yan-Ping Li, Li-Jun Yuan, Li Tao, Wei-Xi Chen, Bao-Jun Wang, Jiao-Qing Pan. III–V/Si Hybrid Laser Array with DBR on Si Waveguide[J]. Chin. Phys. Lett., 2019, 36(10): 084202
[8] Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma, Ai-Yi Qi, Xu-Yan Zhou, Yu-Fei Wang, Wan-Hua Zheng. High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle[J]. Chin. Phys. Lett., 2019, 36(8): 084202
[9] Ya-Jie Li, Jia-Qi Wang, Lu Guo, Guang-Can Chen, Zhao-Song Li, Hong-Yan Yu, Xu-Liang Zhou, Huo-Lei Wang, Wei-Xi Chen, Jiao-Qing Pan. Electrically and Optically Bistable Operation in an Integration of a 1310nm DFB Laser and a Tunneling Diode[J]. Chin. Phys. Lett., 2018, 35(4): 084202
[10] Meng Xun, Yun Sun, Chen Xu, Yi-Yang Xie, Zhi Jin, Jing-Tao Zhou, Xin-Yu Liu, De-Xin Wu. Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2018, 35(3): 084202
[11] Qiang Gao, Wu-Bin Weng, Bo Li, Zhong-Shan Li. Quantitative and Spatially Resolved Measurement of Atomic Potassium in Combustion Using Diode Laser[J]. Chin. Phys. Lett., 2018, 35(2): 084202
[12] Xiao-Wang Fan, Jian-Ping Liu, Feng Zhang, Masao Ikeda, De-Yao Li, Shu-Ming Zhang, Li-Qun Zhang, Ai-Qin Tian, Peng-Yan Wen, Guo-Hong Ma, Hui Yang. Effect of Droop Phenomenon in InGaN/GaN Blue Laser Diodes on Threshold Current[J]. Chin. Phys. Lett., 2017, 34(9): 084202
[13] Si-Hang Wei, Xiang-Jun Shang, Ben Ma, Ze-Sheng Chen, Yong-Ping Liao, Hai-Qiao Ni, Zhi-Chuan Niu. Intracavity Spontaneous Parametric Down-Conversion in Bragg Reflection Waveguide Edge Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(7): 084202
[14] Yang Chen, Yu-Fei Wang, Hong-Wei Qu, Yu-Fang Zhang, Yun Liu, Xiao-Long Ma, Xiao-Jie Guo, Peng-Chao Zhao, Wan-Hua Zheng. High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(7): 084202
[15] Sheng-Nan Zhang, Xiao-Gang Zhang, Jian-Hui Tu, Zhao-Jie Jiang, Hao-Sen Shang, Chuan-Wen Zhu, Wei Yang, Jing-Zhong Cui, Jing-Biao Chen. A 420nm Blue Diode Laser for the Potential Rubidium Optical Frequency Standard[J]. Chin. Phys. Lett., 2017, 34(7): 084202
Viewed
Full text


Abstract