Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 083201    DOI: 10.1088/0256-307X/34/8/083201
ATOMIC AND MOLECULAR PHYSICS |
Coherent Features of Resonance-Mediated Two-Photon Absorption Enhancement by Varying the Energy Level Structure, Laser Spectrum Bandwidth and Central Frequency
Wen-Jing Cheng1, Guo Liang1, Ping Wu1, Tian-Qing Jia2, Zhen-Rong Sun2, Shi-An Zhang2**
1School of Electronic and Electrical Engineering, Shangqiu Normal University, Shangqiu 476000
2State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062
Cite this article:   
Wen-Jing Cheng, Guo Liang, Ping Wu et al  2017 Chin. Phys. Lett. 34 083201
Download: PDF(760KB)   PDF(mobile)(760KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control of the multi-photon absorption by the phase, amplitude and polarization modulation, but the coherent features of the multi-photon absorption depending on the energy level structure, the laser spectrum bandwidth and laser central frequency still lack in-depth systematic research. In this work, we further explore the coherent features of the resonance-mediated two-photon absorption in a rubidium atom by varying the energy level structure, spectrum bandwidth and central frequency of the femtosecond laser field. The theoretical results show that the change of the intermediate state detuning can effectively influence the enhancement of the near-resonant part, which further affects the transform-limited (TL)-normalized final state population maximum. Moreover, as the laser spectrum bandwidth increases, the TL-normalized final state population maximum can be effectively enhanced due to the increase of the enhancement in the near-resonant part, but the TL-normalized final state population maximum is constant by varying the laser central frequency. These studies can provide a clear physical picture for understanding the coherent features of the resonance-mediated two-photon absorption, and can also provide a theoretical guidance for the future applications.
Received: 18 April 2017      Published: 22 July 2017
PACS:  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.80.Wr (Other multiphoton processes)  
  42.65.-k (Nonlinear optics)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51132004, 11474096 and 11604199, the Science and Technology Commission of Shanghai Municipality under Grant No 14JC1401500, and the Higher Education Key Program of He'nan Province under Grant Nos 17A140025 and 16A140030.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/083201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/083201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Jing Cheng
Guo Liang
Ping Wu
Tian-Qing Jia
Zhen-Rong Sun
Shi-An Zhang
[1]Schilders S P and Gu M 1999 Appl. Opt. 38 720
[2]Moreaux L, Sandre O, Blanchard-Desce M and Mertz J 2000 Opt. Lett. 25 320
[3]Larson D R, Zipfel W R, Williams R M, Clark S W, Bruchez M P, Wise F W and Webb W W 2003 Science 300 1434
[4]Hernández F E, Belfield K D, Cohanoschi I, Balu M and Schafer K J 2004 Appl. Opt. 43 5394
[5]Meshulach D and Silberberg Y 1999 Phys. Rev. A 60 1287
[6]Amitay Z, Gamdman A, Chuntonov L and Rybak L 2008 Phys. Rev. Lett. 100 193002
[7]Lozovoy V V, Pastirk I, Walowicz K A and Dantus M 2003 J. Chem. Phys. 118 3187
[8]Pastirk I, Dela Cruz J M, Walowicz K A, Lozovoy V V and Dantus M 2003 Opt. Express 11 1695
[9]Zhang S, Xu S, Ding J, Lu C, Jia T, Qiu J and Sun Z 2014 Appl. Phys. Lett. 104 014101
[10]Zhang S, Yao Y, Xu S, Liu P, Ding J, Jia T, Qiu J and Sun Z 2015 Sci. Rep. 5 13337
[11]Walowicz K A, Pastirk I, Lozovoy V V and Dantus M 2002 J. Phys. Chem. A 106 9369
[12]Weiner A M 2000 Rev. Sci. Instrum. 71 1929
[13]Dudovich N, Dayan B, Faeder S M G and Silberberg Y 2001 Phys. Rev. Lett. 86 47
[14]Meshulach D and Silberberg Y 1998 Nature 396 239
[15]Zhang H, Zhang S and Sun Z 2011 Chin. Phys. B 20 083202
[16]Zhang S, Zhang H, Lu C, Jia T, Wang Z and Sun Z 2010 J. Chem. Phys. 133 214504
[17]Yao Y, Zhang S, Zhang H, Ding J, Jia T, Qiu J and Sun Z 2015 Sci. Rep. 4 07295
Related articles from Frontiers Journals
[1] ChunMei Liu, Jörn Manz, Huihui Wang, and Yonggang Yang. Quantum Engineering of Helical Charge Migration in HCCI[J]. Chin. Phys. Lett., 2022, 39(12): 083201
[2] Qifang Peng, Zhaoyang Peng, Yue Lang, Yalei Zhu, Dongwen Zhang, Zhihui Lü, and Zengxiu Zhao. Decoherence Effects of Terahertz Generation in Solids under Two-Color Femtosecond Laser Fields[J]. Chin. Phys. Lett., 2022, 39(5): 083201
[3] Mo-Juan Yin, Tao Wang, Xiao-Tong Lu, Ting Li, Ye-Bing Wang, Xue-Feng Zhang, Wei-Dong Li, Augusto Smerzi, and Hong Chang. Rabi Spectroscopy and Sensitivity of a Floquet Engineered Optical Lattice Clock[J]. Chin. Phys. Lett., 2021, 38(7): 083201
[4] Junyang Yuan, Yixuan Ma, Renyuan Li, Huanyu Ma, Yizhu Zhang, Difa Ye, Zhenjie Shen, Tianmin Yan, Xincheng Wang, Matthias Weidemüller, Yuhai Jiang. Momentum Spectroscopy for Multiple Ionization of Cold Rubidium in the Elliptically Polarized Laser Field[J]. Chin. Phys. Lett., 2020, 37(5): 083201
[5] Kun-Peng Wang, Jun Zhuang, Xiao-Dong He, Rui-Jun Guo, Cheng Sheng, Peng Xu, Min Liu, Jin Wang, Ming-Sheng Zhan. High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting[J]. Chin. Phys. Lett., 2020, 37(4): 083201
[6] Peng-Ju Tang, Peng Peng, Xiang-Yu Dong, Xu-Zong Chen, Xiao-Ji Zhou. Implementation of Full Spin-State Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 083201
[7] Wen-Jing Cheng, Shi-Hua Zhao. Simulation of Intermediate State Absorption Enhancement in Rare-Earth Ions by Polarization Modulated Femtosecond Laser Field[J]. Chin. Phys. Lett., 2018, 35(11): 083201
[8] Guang Yang, Wei Li, Li-Xiang Cen. Nonadiabatic Population Transfer in a Tangent-Pulse Driven Quantum Model[J]. Chin. Phys. Lett., 2018, 35(1): 083201
[9] Jian-Hong Chen, Song-Feng Zhao, Guo-Li Wang, Xiao-Ping Zheng, Zheng-Rong Zhang. Angle-Resolved Electron Spectra of F$^{-}$ Ions by Few-Cycle Laser Pulses[J]. Chin. Phys. Lett., 2017, 34(6): 083201
[10] Yan-Li Xue, Ke Zhang, Bao-Hua Feng, Zhi-Yuan Li. Inhibition of Atomic Decay in Strongly Coupled Photonic Crystal Cavities[J]. Chin. Phys. Lett., 2016, 33(07): 083201
[11] Qi-Chun Liu, Han Cai, Ying-Shan Zhang, Jian-She Liu, Wei Chen. Autler–Townes Splitting in a ${\it \Delta}$-Type Quantum Three-Level System[J]. Chin. Phys. Lett., 2016, 33(07): 083201
[12] ZHANG Jun, GU Zhen-Jie, QIAN Peng, HAN Zhi-Guang, CHEN Jie-Fei. Cold Atom Cloud with High Optical Depth Measured with Large Duty Cycle[J]. Chin. Phys. Lett., 2015, 32(06): 083201
[13] GONG Shi-Jie, ZHOU Fei, WU Hao-Yu, WAN Wei, CHEN Liang, FENG Mang. Spectra of 42S1/2→32D5/2 Transitions of a Single Trapped 40Ca+ Ion[J]. Chin. Phys. Lett., 2015, 32(01): 083201
[14] CHEN Jing-Dong, FANG Yu-Hong, ZHANG Ting. High-Precision Two-Dimensional Atom Localization in a Cascade-Type Atomic System[J]. Chin. Phys. Lett., 2014, 31(10): 083201
[15] NIU Zhen-Xia, XUE Ju-Kui. Selective Tunneling Dynamics of Bosons with Effective Three-Particle Interactions[J]. Chin. Phys. Lett., 2014, 31(10): 083201
Viewed
Full text


Abstract