Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 080601    DOI: 10.1088/0256-307X/34/8/080601
GENERAL |
Progress of the Inertial Mass Measurement Project at NIM
Zhuang Fu1,2,3**, Zhong-Hua Zhang2,3, Zheng-Kun Li2,3, Wei Zhao1, Lu-Shuai Qian1,2,3, Shi-Song Li1**
1Department of Electrical Engineering, Tsinghua University, Beijing 100084
2Electromagnetism Division of National Institute of Metrology, National Institute of Metrology (NIM), Beijing 100029
3Key Laboratory for the Electrical Quantum Standard of AQSIQ, National Institute of Metrology (NIM), Beijing 100029
Cite this article:   
Zhuang Fu, Zhong-Hua Zhang, Zheng-Kun Li et al  2017 Chin. Phys. Lett. 34 080601
Download: PDF(638KB)   PDF(mobile)(635KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An experiment is proposed to precisely measure the Planck constant. In this experiment, the Planck constant is measured based on the inertial mass measurement rather than the gravitational mass determinations in some other well-known experiments, e.g., the Kibble balance and counting atoms. We link the mechanical force to a quantum-traceable electrostatic force by a beam balance oscillator. After a 5-year continuous effort, the principle of the proposal is verified by a preliminary measurement with a relative uncertainty of $5.4\times 10^{-5}$. The proposal has the potential to achieve much higher measurement accuracy with further improvements.
Received: 17 April 2017      Published: 22 July 2017
PACS:  06.20.Jr (Determination of fundamental constants)  
  06.30.Dr (Mass and density)  
  06.30.Ka (Basic electromagnetic quantities)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51477160 and 91536224, and the National Key Research and Development Program of China under Grant No 2016YFF0200102.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/080601       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/080601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhuang Fu
Zhong-Hua Zhang
Zheng-Kun Li
Wei Zhao
Lu-Shuai Qian
Shi-Song Li
[1]Planck M 1901 Ann. Phys. 309 553
[2]Steiner R 2013 Rep. Prog. Phys. 76 016101
[3]Andreas B et al 2011 Phys. Rev. Lett. 106 030801
[4]Robinson I A et al 2016 Metrologia 53 A46
[5]Li S et al 2015 Chin. Phys. B 24 010601
[6]Newell D B 2014 Phys. Today 67 35
[7]Williams E R et al 1998 Phys. Rev. Lett. 81 2404
[8]Mohr P J, Taylor B N and Newell D B 2012 J. Phys. Chem. Ref. Data 41 043109
[9]Azuma Y et al 2015 Metrologia 52 360
[10]Kibble B P 1976 Atomic Masses and Fundamental Constants 5th edn (New York: Springer) p 545
[11]Sanchez C et al 2014 Metrologia 51 S5
[12]Haddad D et al 2016 Rev. Sci. Instrum. 87 061301
[13]Eichenberger A et al 2009 Eur. Phys. J. Spec. Top. 172 363
[14]Stock M 2013 Metrologia 50 R1
[15]Thomas M et al 2015 Metrologia 52 433
[16]Sutton C 2009 Metrologia 46 467
[17]Schlamminger S et al 2008 Phys. Rev. Lett. 100 041101
[18]Li S et al 2013 Metrologia 50 9
[19]Li S et al 2012 Chin. Phys. B 21 064601
[20]Hinkley N, Sherman J A, Phillips N B et al 2013 Science 341 1215
[21]Nayfeh A H et al 1995 Nonlinear Oscillations (Birlin: Wiley-VCH)
[22]Williams E R et al 1992 J. Res. Natl. Inst. Stand. Technol. 97 299
[23]Poli N et al 2011 Phys. Rev. Lett. 106 038501
Related articles from Frontiers Journals
[1] Ju Cheng, Jian Lu, Hong-Chao Zhang, Feng Lei, Maryam Sardar, Xin-Tian Bian, Fen Zuo, Zhong-Hua Shen, Xiao-Wu Ni, Jin Shi. Combining Cubic Spline Interpolation and Fast Fourier Transform to Extend Measuring Range of Reflectometry[J]. Chin. Phys. Lett., 2018, 35(5): 080601
[2] LI Qing, LIU Lin-Xia, TU Liang-Cheng, SHAO Cheng-Gang, LUO Jun. Effect of Local Magnetic Field in G Measurement with Time-of-Swing Method[J]. Chin. Phys. Lett., 2010, 27(7): 080601
[3] ZHANG Ji-Tao, LI Yan, LUO Zhi-Yong, WU Xue-Jian. Determination of Mean Thickness of an Oxide Layer on a Silicon Sphere by Spectroscopic Ellipsometry[J]. Chin. Phys. Lett., 2010, 27(5): 080601
[4] LIU Lin-Xia, LIU Qi, SHAO Cheng-Gang, ZHANG Ya-Ting, LUO Jun, Vadim Milyukov. Measurement of Density Inhomogeneity for Glass Pendulum[J]. Chin. Phys. Lett., 2008, 25(12): 080601
[5] YUE Ying, FAN Shu-Hua, LIU Lin-Xia, LUO Jun. Dynamical Behaviour of a Modulated Torsion Pendulum in Test of Weak Equivalence Principle[J]. Chin. Phys. Lett., 2005, 22(8): 080601
[6] GUO Jun-Qi, HU Zhong-Kun, GU Bang-Ming, LUO Jun,. Measurement of Eccentricity of the Centre of Mass from the Geometric Centre of a Sphere[J]. Chin. Phys. Lett., 2004, 21(4): 080601
[7] CHEN De-Cai, LUO Jun, HU Zhong-Kun, ZHAO Liang. Precise Measurement of Separation Between Two Spherical Source Masses[J]. Chin. Phys. Lett., 2004, 21(1): 080601
[8] WU Shu-Chao, HUANG Yu, FAN Shu-Hua, LUO Jun. Measurement of the Floor Tilt in Experimental Determination of the Gravitational Constant[J]. Chin. Phys. Lett., 2003, 20(8): 080601
[9] ZHAO Liang, TU Ying, GU Bang-Ming, HU Zhong-Kun, LUO Jun,. An Abnormal Vibrational Mode of Torsion Pendulum[J]. Chin. Phys. Lett., 2003, 20(8): 080601
[10] LUO Jun, WANG Wen-Min, HU Zhong-Kun, WANG Xue-Li. Precise Determination of Separation Between Spherical Attracting Masses in Measuring the Gravitational Constant[J]. Chin. Phys. Lett., 2001, 18(8): 080601
[11] HU Zhong-Kun, WANG Xue-Li, LUO Jun. Thermoelastic Correction in the Torsion Pendulum Experiment[J]. Chin. Phys. Lett., 2001, 18(1): 080601
[12] LUO Jun, HU Zhong-kun, LUO Xu-jun, WU Zi-gang. Determination of the Unperturbed Period of a Torsion Pendulum in the Time-of-Swing Method[J]. Chin. Phys. Lett., 1999, 16(12): 080601
Viewed
Full text


Abstract